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Abstract. The strong coupling expansion coefficients for the ordinary and renormalized energies
of the ground and first excited states of the quartic, sextic, octic and decadic anharmonic oscillators
with the HamiltonianH = p2 + x2 + βx2m, m = 2, 3, 4, 5 are computed. The expansion
coefficients are also computed for higher excited states of the quartic oscillator. The large-order
behaviour of the coefficients, the radii of convergence of the series and the summation rules for the
coefficients are discussed. It is shown that, in contrast to the divergent weak coupling expansions,
the renormalized strong coupling perturbation wavefunctions have simple form and straightforward
physical interpretation. Finally, both the strong coupling perturbation approaches are compared.

1. Introduction

In this paper, we investigate the Schrödinger equation

Hψ = E(β)ψ (1)

for the anharmonic oscillators, where

H = p2 + x2 + βx2m β > 0 m > 2 (2)

andp = −id/dx.
As is well known, the ordinary energyE(β) can be expressed as a weak coupling

perturbation series in powers ofβ,

E(β) =
∞∑
n=0

bnβ
n (3)

which diverges for everyβ > 0 (see, e.g., [1–7]). The energyE(β) also possesses the strong
coupling expansion (see, e.g., [2,3,6])

E(β) = β1/(m+1)
∞∑
n=0

Knβ
−2n/(m+1) (4)

corresponding to an equivalent Hamiltonian

H = β1/(m+1)(p2 + β−2/(m+1)x2 + x2m) (5)

which can be obtained from equation (2) by means of the scaling transformationx →
β−1/[2(m+1)]x. The series (4) converges ifβ is sufficiently large i.e. ifβ > βmin, where
βmin > 0.
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Alternative perturbative approaches based upon renormalization (Wick ordering [8] or
scaling [5, 9–12]) have considerable advantages. The renormalization can be introduced by
means of a new coupling constantκ related toβ by the equation [9–12]

β = κ

Bm(1− κ)(m+1)/2
(6)

where

Bm = m(2m− 1)!!/2m−1. (7)

This transformation maps the original unbounded intervalβ ∈ [0,∞) onto the bounded
intervalκ ∈ [0, 1) (see also [13–16]). With the help of equation (6), the Hamiltonian (2) can
be expressed in terms of a renormalized HamiltonianHR

H = HR

(1− κ)1/2 (8)

where

HR = p2 + x2 + κ(x2m/Bm − x2) = p2 + x2m/Bm + (1− κ)(x2 − x2m/Bm). (9)

The renormalized energy

ER(κ) = (1− κ)1/2E(β) (10)

can either be expressed as a renormalized weak coupling expansion inκ

ER(κ) =
∞∑
n=0

cnκ
n (11)

or as a renormalized strong coupling expansion in 1− κ

ER(κ) =
∞∑
n=0

0n(1− κ)n. (12)

The weak coupling expansion (11) diverges almost as strongly as the weak coupling
expansion (3) [8, 11, 17]. However, the strong coupling expansion (12) has some very useful
properties [12,18–20].

For the ground and first excited states of the quartic anharmonic oscillator, we numerically
computed 200 coefficients0n [18]. From these data, we obtained the large-order formula for
the0n coefficients of the quartic oscillator

0n = −12K

K!

4
√

6

πe2
(2n)(K−1)/2e−2

√
2n (13)

whereK = 0, 1, 2, . . . is the index of excitation.
This formula was generalized to an arbitrarym andBm in [19]

0n = −2K+3/2aK+1/2b

πK!
√
m

(bn)(
K+1
m
−1)e−[ m

m−1 (bn)
1/m] m > 3 (14)

where

a = 0(2m/(m− 1))

02(m/(m− 1))
(15)

and

b = 4(m− 1)Bma
1−m. (16)

Form = 2, the right-hand side of equation (14) has to be divided bye2. Form = 2, 3, 4, 5 and
K = 0, 1, we compared equation (14) with the computed coefficients0n and performed the
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asymptotic analysis of the ratio of the numerical values of0n and the values following from
equation (14) (see [19]). The large-order formula (14) was also used in the summation rule

60 =
∞∑
n=0

0n = 2K + 1 (17)

valid for arbitrarym = 2, 3, . . . . It was shown in [19] that: (1) Equation (14) can be used
at least qualitatively fromn of the order of ten; (2) the absolute value of equation (14) is an
upper bound to the absolute values of the actual0n coefficients; (3) the asymptotic behaviour
of the numerical coefficients0n is given by equation (14); (4) the use of equation (14) in the
summation rule (17) improves its accuracy, (5) finally, the results of [12, 18–20] show that,
in contrast to the strong coupling expansion (4), the renormalized strong coupling expansion
(12) converges for arbitrarym > 2,K > 0 andκ ∈ (0, 2).

The large-order behaviour of theKn coefficients was investigated in [21], where the large-
order formula for theKn coefficients

Kn = Acos(nϕ + δ)

|zK |nn3/2
(18)

whereϕ = argzK was derived. Here,A andδ are constants,zK denotes the complex square-
root branch point of the energyε(z) of a given stateK with the smallest distance to the
origin [1–3,22]

ε(z) = β−1/(m+1)E(β) =
∞∑
n=0

Knz
n (19)

andz = β−2/(m+1). The values ofz0 = z2 andz4 of the quartic oscillator are known from [23].
The value of the branch pointz0 is also known for the sextic, octic and decadic oscillators [24].
The importance of the branch pointzK follows from the fact that it determines the minimal
value ofβ for which the series (4) converges. It follows from equations (4) and (18) that

βmin = 1

|zK |(m+1)/2
. (20)

It was shown in [24] that the general large-order formula for theKn coefficients reads

Kn = 1

|zK |n−1
[c1C

(−1/2)
n (cosϕ) + c2|zK |2C(−3/2)

n (cosϕ) + · · ·] (21)

whereC(α)n (x)are the Gegenbauer polynomials. Further, it was shown in [24] that equation (21)
can also be written in the form

Kn = 1

|zK |n−1n3/2
[(e1 + e2/n + e3/n

2 + · · ·) cos(nϕ) + (f1 + f2/n + f3/n
2 + · · ·) sin(nϕ)]

(22)

whereei andfi are constants. Taking only the leading term proportional to 1/n3/2, this equation

yields (18) withA = |zK |
√
e2

1 + f 2
1 and cosδ = e1/

√
e2

1 + f 2
1 . A general accurate method of

calculating the value of the branch pointzK from the numerical values of theKn coefficients
was suggested in [24].

The main purpose of this paper is to perform detailed numerical analysis of the convergent
strong coupling expansions (4) and (12) and the corresponding wavefunctions which have not
been investigated until now. First, we describe the numerical method used for computing
the expansion coefficients (section 2). The large-order behaviour of the renormalized strong
coupling coefficients0n, the radii of convergence of the series (12), the sign pattern of the
coefficients, the summation rules for the coefficients and the perturbation wavefunctions are
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discussed in section 3. In section 4, we discuss the large-order behaviour of the ordinary
strong coupling expansion coefficientsKn, calculatezK andβmin for the final excited state
and investigate the perturbation wavefunctions. In the conclusion, both the strong coupling
perturbative approaches are compared.

2. Numerical method

We assume the usual formulation of the perturbation theory

Hψ = Eψ (23)

where

H = H0 + λH1 (24)

ψ = ψ0 + λψ1 + λ2ψ2 + · · · (25)

and

E = E0 + λE1 + λ2E2 + · · · . (26)

The well known equations for the perturbation energiesEn and wavefunctionsψn read

H0ψ0 = E0ψ0 (27)

and

H0ψn +H1ψn−1 =
n∑
i=0

Eiψn−i n = 1, 2, . . . . (28)

Our numerical method was formulated in [25,26] and commented in [27–30]. We assume
that equations (27) and (28) are numerically integrated from the point−x0 to the pointx0 with
the boundary conditions

ψn(−x0) = d ψn(x0) = 0 n = 0, 1, . . . . (29)

Here, x0 is a sufficiently large number andd is a constant different from zero. We also
assume that the wavefunctionsψi and perturbation correctionsEi are already calculated for
i = 0, . . . , n− 1. Then, it follows from equation (28) that the wavefunctionψn depends not
only on the coordinatex but also on the perturbation energyEn taken as a parameter

ψn = ψn(En, x). (30)

It was shown in [25,26] that the functionψn(En, x0) is a linear function of the parameterEn

ψn(En, x0) = ψn(E′n, x0) + (En − E′n)F (x0). (31)

TakingE′n = 0 and assuming in agreement with equation (29)ψn(En, x0) = 0 we get the
equation for the sought value ofEn for which the boundary conditionψn(x0) = 0 is obeyed:

En = −ψn(0, x0)

F (x0)
n > 1. (32)

To computeEn, only the values of the functionsψn(0, x0) andF(x0) are needed. The value
of F(x0), which is independent ofn, can easily be calculated from equation (31) for two
arbitrarily chosen values ofEn andE′n, En 6= E′n andn = 1.

Equation (28) can be solved with the usual orthogonalization condition (see our discussion
in [26]):

〈ψ0|ψn〉 = δn0. (33)
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However, it is obvious that this modification of the algorithm used in [30] has no effect on the
values of the energiesEn. Thus, as far as the perturbation energies are concerned, the use of
equation (33) is not necessary and only increases the computational time. As we show in the
following section, the application of equation (33) may not be convenient even from the point
of view of the wavefunctions when simple physical interpretation of the wavefunctionsψn can
be lost.

The renormalized strong coupling case is obtained forH0 = p2 + x2m/Bm, H1 =
x2 − x2m/Bm andλ = 1− κ. Analogously, the ordinary strong coupling case is obtained
for H0 = p2 + x2m,H1 = x2 andλ = β−2/(m+1).

3. Renormalized strong coupling case

3.1. Coefficients0n

3.1.1. Ground and first excited states.Calculation of the coefficients0n is difficult and,
except for the quartic oscillator [18], only a limited number of these coefficients has been
computed [12, 19]. Using the method described in section 2, we are able to compute a large
number of the0n coefficients for an arbitrary oscillator with the Hamiltonian (9). Since
the quartic case was investigated in detail in [18] we limit ourselves to the discussion of the
coefficients0n for the ground and first excited states (K = 0, 1) of the sextic, octic and decadic
oscillators (m = 3, 4, 5).

According to our experience, the usual computational accuracy does not yield reliable
results at large orders of the perturbation theory (n about 100 and larger). For this reason, we
used the language Maple with an adjustable number of decimal digits. We used 100 digits
accuracy for the sextic oscillator, 125 digits for the octic oscillator and 175 digits for the decadic
oscillator. The values ofx0 were takenx0 = 6.2 for the sextic oscillator,x0 = 5.9 for the octic
oscillator andx0 = 5.4 for the decadic oscillator. The resulting accuracy of the0n coefficients
is at least 50 digits which is necessary for the reliable computation of theKn coefficients from
the0n coefficients (see section 4.1.1).

Selected coefficients0n for the ground and first excited states of the sextic, octic and
decadic oscillators are shown in tables 1 and 2. Similarly to the0n coefficients for the
quartic oscillator [18], the first two coefficients for the ground state of the sextic, octic and
decadic oscillators are positive. However, in contrast to the quartic oscillator, the ground state
coefficient03 is positive for these oscillators. In case of the first excited state, the sign pattern
of the0n coefficients for the sextic, octic and decadic oscillators is the same as for the quartic
oscillator. We note that beginning withn = 4 for the ground state andn = 2 for the first
excited state, all the coefficients0n are negative in agreement with the large-order formula
(14).

The accuracy of the computed coefficients0n can be tested by means of the summation
rules [12,18]

6j =
∞∑
n=0

[n(n− 1) . . . (n− j + 1)0n] = (−1)j j !cj . (34)

From the numerically computed coefficients0n, we can calculate only the partial sums

6
(N)
j =

N∑
n=0

[n(n− 1) . . . (n− j + 1)0n]. (35)

In tables 3 and 4, the values of6(N)
j for N = 125 andj = 0, 1 are compared with the exact
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Table 1. Selected values of the coefficients0n for the ground state (K = 0) of the sextic, octic and
decadic oscillators (m = 3, 4, 5).

m = 3 m = 4 m = 5
n 0n 0n 0n

0 0.625 089 812 5 0.555 130 236 0 0.503 318 917 6
1 0.407 659 180 6 0.500 898 761 7 0.578 406 995 4
2 −0.315 164 767 9e−1 −0.580 375 339 6e−1 −0.906 669 518 2e−1
3 0.642 929 680 7e−3 0.457 566 207 1e−2 0.120 372 764 9e−1
4 −0.553 405 367 0e−3 −0.571 262 654 0e−3 −0.794 449 938 7e−3
5 −0.392 921 718 6e−3 −0.525 828 977 1e−3 −0.769 618 471 6e−3
6 −0.244 097 416 7e−3 −0.272 173 161 1e−3 −0.145 371 012 2e−3
7 −0.167 766 666 7e−3 −0.214 187 016 7e−3 −0.200 337 885 7e−3
8 −0.118 767 916 7e−3 −0.164 649 523 0e−3 −0.163 584 063 0e−3
9 −0.862 006 277 6e−4 −0.127 557 016 5e−3 −0.125 036 986 4e−3

10 −0.639 829 952 0e−4 −0.101 300 583 5e−3 −0.104 024 507 3e−3
20 −0.672 691 832 5e−5 −0.184 812 869 8e−4 −0.246 962 137 9e−4
40 −0.397 936 144 4e−6 −0.243 467 474 1e−5 −0.466 262 441 7e−5
60 −0.555 234 420 3e−7 −0.631 948 747 9e−6 −0.158 140 803 8e−5
80 −0.116 764 842 1e−7 −0.224 282 875 1e−6 −0.699 250 213 8e−6

100 −0.314 767 049 4e−8 −0.957 380 574 6e−7 −0.360 768 867 2e−6
125 −0.771 174 119 0e−9 −0.391 152 113 0e−7 −0.181 382 482 0e−6

Table 2. Selected values of the coefficients0n for the first excited state (K = 1) of the sextic, octic
and decadic oscillators (m = 3, 4, 5).

m = 3 m = 4 m = 5
n 0n 0n 0n

0 2.368 979 771 4 2.153 766 002 1 1.975 493 814 8
1 0.723 118 311 0 0.954 429 512 5 1.146 380 631 9
2 −0.431 081 529 1e−1 −0.540 686 823 1e−1 −0.723 953 396 3e−1
3 −0.158 281 475 7e−1 −0.137 859 664 1e−1 −0.107 716 739 0e−1
4 −0.934 323 352 3e−2 −0.859 311 646 6e−2 −0.654 430 077 2e−2
5 −0.604 878 249 5e−2 −0.606 039 306 7e−2 −0.499 939 393 6e−2
6 −0.412 813 241 5e−2 −0.443 889 685 3e−2 −0.381 394 463 1e−2
7 −0.293 301 664 8e−2 −0.336 291 435 1e−2 −0.298 478 118 8e−2
8 −0.215 043 421 3e−2 −0.261 847 789 1e−2 −0.239 580 073 3e−2
9 −0.161 687 390 9e−2 −0.208 414 485 0e−2 −0.196 186 518 2e−2

10 −0.124 108 209 6e−2 −0.168 904 987 3e−2 −0.163 292 955 4e−2
20 −0.169 825 905 6e−3 −0.365 382 822 9e−3 −0.437 333 455 4e−3
40 −0.136 622 790 4e−4 −0.592 826 908 4e−4 −0.962 701 857 7e−4
60 −0.228 871 000 8e−5 −0.175 077 133 5e−4 −0.360 010 321 4e−4
80 −0.546 009 067 5e−6 −0.681 095 858 8e−5 −0.170 844 612 3e−4

100 −0.161 803 306 7e−6 −0.311 956 987 8e−5 −0.931 290 235 4e−5
125 −0.434 440 450 8e−7 −0.136 611 765 9e−5 −0.494 604 037 4e−5

values of the sums60 and61 given by equation (17) and by the equation

61 =
∞∑
n=0

n0n = −c1. (36)

ForK = 0 andK = 1, the coefficientc1 is given by the equation

c1 = 〈ϕ0|x2m/Bm − x2|ϕ0〉
〈ϕ0|ϕ0〉 = −m− 1

2m
(37)
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Table 3. Summation rules for the coefficients0n for the ground state of the quartic, sextic, octic
and decadic oscillators (m = 2, 3, 4, 5). 6j is the exact value of the summation rule for the infinite

number of terms,6(N)j denotes the partial sum forn = 0, . . . , N and6LOj equals6(N)j plus the
rest of the sum in which the large-order formula (14) forn = N + 1, . . . ,5000 was used. Here,
N = 125.

m = 2 m = 3 m = 4 m = 5

j 6j 6
(N)
j −6j 6LOj −6j 6

(N)
j −6j 6LOj −6j 6

(N)
j −6j 6LOj −6j 6

(N)
j −6j 6LOj −6j

0 1 0.339e−14 −0.265e−15 0.160e−7 −0.805e−8 0.142e−5 −0.298e−6 0.951e−5 −0.139e−5
1 m−1

2m 0.453e−12 −0.354e−13 0.239e−5 −0.119e−5 0.245e−3 −0.493e−4 0.191e−2 −0.258e−3

Table 4. Summation rules for the coefficients0n for the first excited state of the quartic, sextic,
octic and decadic oscillators (m = 2, 3, 4, 5). 6j is the exact value of the summation rule for the

infinite number of terms,6(N)j denotes the partial sum forn = 0, . . . , N and6LOj equals6(N)j

plus the rest of the sum in which the large-order formula (14) forn = N + 1, . . . ,5000 was used.
Here,N = 125.

m = 2 m = 3 m = 4 m = 5

j 6j 6
(N)
j −6j 6LOj −6j 6

(N)
j −6j 6LOj −6j 6

(N)
j −6j 6LOj −6j 6

(N)
j −6j 6LOj −6j

0 1 0.582e− 12 −0.134e− 12 0.965e− 6 −0.592e− 6 0.543e− 4 −0.183e− 4 0.286e− 3 −0.849e− 4
1 m−1

2m 0.780e− 10 −0.180e− 10 0.145e− 3 −0.881e− 4 0.958e− 2 −0.308e− 2 0.603e− 1 −0.164e− 1

where |ϕ0〉 is the unperturbed ground or first excited state wavefunction of the harmonic
oscillator. It is seen from tables 3 and 4 that the difference6

(N)
j − 6j is always positive in

agreement with the negative sign of the coefficients0n for largen. The agreement of6(N)
j

and6j is excellent for the ground state of the quartic oscillator (K = 0 andm = 2). This
agreement goes down with increasingm andK as can be seen from equation (14) which shows
that the series (12) converges less rapidly with increasingm andK. Comparing thej = 0 and
j = 1 results we see that thej = 0 case leads to better agreement than thej = 1 case. Again,
this result can be expected because of the increased contribution of the terms with largen in
equation (36) in comparison with equation (17). Similarly to [18, 19], we also calculated the
sums

6LO
j =

N∑
n=0

[n(n− 1) . . . (n− j + 1)0n] +
∞∑

n=N+1

[n(n− 1) . . . (n− j + 1)0n] (38)

where we used the numerical values of the0n coefficients in the first sum and the large-order
formula (14) in the second sum. The infinite upper bound in the second sum was replaced
by 5000. It is seen that if the second sum is included into the summation rule its accuracy
increases about one order. At the same time, the difference6LO

j −6j is negative which shows
that the absolute value of the large-order formula (14) is an upper bound to the actual values
of the coefficients0n.

It follows from this discussion that truncating the series (12) at some largen, we get an
upper bound to the exact energyER(κ). If we use the large-order formula (14) in the remainder
of the series and add it to the truncated series we get the lower bound.

We also calculated the radius of convergencer of the series (12) (see also [19]). The ratio
|0n−1/0n| appearing in the d’Alembert convergence criterion was computed for the ground
and first excited states of the quartic, sextic, octic and decadic oscillators forn = 109, . . . ,125.
These values were extrapolated ton→∞ by means of the Thiele extrapolation built in Maple
(see table 5). In the extrapolation, the variable 1/n1/m appearing in equation (14) was used. It is
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Table 5. The radius of convergence of the renormalized strong coupling expansion (12) obtained
from the d’Alembert convergence criterion for the ground and first excited states (K = 0, 1) of the
quartic, sextic, octic and decadic oscillators (m = 2, 3, 4, 5).

m = 2 m = 3 m = 4 m = 5
K r r r r

0 1.000 006 1.000 02 0.999 98 0.9998
1 1.000 02 1.000 03 1.001 0.9995

seen from table 5 that this direct computation yields the values ofr which are very close to one.
This test independent of the large-order formula (14) confirms that the renormalized strong
coupling expansion (12) converges forκ ∈ (0, 2). It agrees with our conclusions in [18–20].

3.1.2. Excited states of the quartic oscillator.We investigated the coefficients0n for higher
excited states of the quartic oscillator forK = 2, . . . ,10 (see table 6). It is seen that the
coefficients0n are, except for then = 0,K = 2, . . . ,10 andn = 1,K = 2 cases, negative.
With increasingn, their behaviour can approximately be described by equation (14). However,
the relative difference of the numerical values of0n and equation (14) increases rapidly with
increasingK. To achieve better agreement of the values of0n and equation (14) it would be
necessary to take into account corrections to the leading term as it was done in [18, 19] or to
go to very largen. The absolute value of the0n coefficients forn = 100 is still relatively
large. To get lower absolute values of the coefficients for largen it would be necessary to take
another value of the constantBm = 3 which was optimized for the ground state [10].

We also verified that these coefficients0n obey the summation rule (17) and that the
expansion (12) converges forκ ∈ (0, 2) (see also [19,20]).

3.2. Wavefunctionsψn

To the best of our knowledge, the wavefunctions of the anharmonic oscillator were investigated
in [31] only, where the ground state wavefunctions for the quartic oscillator with the
HamiltonianH were investigated by means of the optimizedδ expansion. For this reason,
we decided to perform detailed analysis of the wavefunctions here. Our approach is more
straightforward and transparent than that used in [31].

First we note that the form of the wavefunctionsψn depends on the form of the initial
conditions and on the fact of whether or not the orthogonality condition (33) is applied. We
found that the functionsψn have a simpler form with a straightforward interpretation if this
condition is not applied.

In our calculations, we used the following initial conditions for the unperturbed
wavefunctionψ0:

ψ0(x = 0) = 1 dψ0/dx(x = 0) = 0 (39)

for even parity states (K = 0, 2, . . .) and

ψ0(x = 0) = 0 dψ0/dx(x = 0) = 1 (40)

for odd parity states (K = 1, 3, . . .). For the perturbation correctionsψn to ψ0 we used the
conditions

ψn(x = 0) = 0 dψn/dx(x = 0) = 0 n > 1. (41)

The wavefunctionsψn for the ground state of the quartic oscillator are shown in figure 1.
Because of the symmetry of the wavefunctions, only thex > 0 part of the functions is shown.
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Neither the functionsψn nor the resulting wavefunctionψ are normalized. The first few overlap
integralsS0n = 〈ψ0|ψn〉 for the ground state equalS00 = 1.13,S01 = −0.046,S02 = 0.0038,
S03 = 0.000 31,S04 = 0.000 18,S05 = 0.000 092. We see that the functionsψn are ‘almost
orthogonal’ and the overlap integrals are, except forS01, positive.

It is seen from figure 1 that the perturbation series for the renormalized wavefunction

ψR =
∞∑
n=0

(1− κ)nψn (42)

has a very simple physical interpretation. The functionψ0 corresponds to the Hamiltonian
H0, whereH0 = p2 + x4/3. The wavefunctionψR corresponding to the Hamiltonian
HR = H0 + (1− κ)H1, whereH1 = x2− x4/3 has to decay less slowly than the functionψ0.
Therefore, the functionψ1 is first negative and then positive. Then, the functionψ2 corrects
the behaviour of the functionψ0 in more detail. It is seen from figures 1(a) and (b) that the
ground state functionψ2 has a minimum at the point whereψ1 changes its sign. Beginning
from n > 3 (see figures 1(b)–(d)), the functionsψn have very simple form. They are positive
for all x, their maximum shifts with increasingn to larger values ofx and the value of their
maximum goes down. With increasingn, smaller corrections(1− κ)nψn toψR in the region
more distant from the origin are obtained. Therefore, truncating the perturbation series (42)
one can make the error caused by the truncation arbitrarily small.

From the form of the functionsψn, we can understand the signs of the0n coefficients for
the ground state of the quartic oscillator.

The functionψ0 shown in figure 1(a) is the ground state solution of the Schrödinger
equation with the HamiltonianH0. The corresponding eigenvalue00 = 0.735 21 [18] must
lie above the minimum of the potential and, therefore, must be positive.

The first energy correction is given by the well known equation

01 = W00

S00
(43)

whereW0n = 〈ψ0|H1|ψn〉. Taking into account that the potentialH1 is positive forx ∈ (0,√3)
and the functionψ0 decays rapidly forx >

√
3 we see that the coefficient01 has to be positive

in agreement with01 = 0.277 05 [18].
Further coefficients0n are given by the equation following from equation (28):

0n = W0,n−1−
∑n−1

i=1 0iS0,n−i
S00

. (44)

For n = 2, the functionψ1 is negative for smallx > 0 (see figure 1(b)) so that
W01 = −0.025 is also negative. Taking into account the values ofW01, S00, S01 and01

in equation (44) forn = 2 we get the negative value of02 in agreement with02 = −0.011 178
[18].

Because of the form of the wavefunctionsψn (see figure 1(b)–(d) and the discussion
above) and the form of the potentialH1 the matrix elementsW0,n−1 are positive forn = 3 and
negative forn > 3. At the same time, the sum

∑n−1
i=1 0iS0,n−i is positive forn > 3. Thus, the

sign of the coefficient03 depends on the absolute values of these terms. It is negative for the
ground and first excited states of the quartic oscillator and the first excited state of the sextic,
octic and decadic oscillators (see [18] and table 2). However, it is positive for the ground state
of the sextic, octic and decadic oscillators (see table 1).

For n > 4, the termW0,n−1 is negative. It is consequence of the fact that the functions
ψ0 andψn, n > 2 have positive values and the functionsψn, n > 2 have maximum in the
region where the perturbation potentialH1 becomes negative (see above). Since both the terms
W0,n−1 and−∑n−1

i=1 0iS0,n−i are negative the coefficients0n are forn > 4 negative.
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Figure 1. The perturbation wavefunctionsψn for the ground state of the quartic oscillator with the
renormalized HamiltonianHR = H0 + (1− κ)H1, whereH0 = p2 + x4/3 andH1 = x2 − x4/3.
Because of the symmetry of the functionsψn, only thex > 0 part of the functions is shown. (a)
n = 0, 1, (b) n = 2, . . . ,5, (c) n = 6, . . . ,10, (d) n = 21, . . . ,25.
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Figure 1. (Continued)
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The main arguments of this discussion also apply for the excited states and for the higher-
order oscillators withm = 3, 4, 5 where the perturbation potentialH1 = x2 − x2m/Bm and
the wavefunctionsψn have analogous form.

4. Ordinary strong coupling case

4.1. CoefficientsKn

4.1.1. Ground and first excited states.The coefficientsKn can be computed by the method
described in section 2. They can also be computed from the0n coefficients via the equations
[32]

K0B
−1
m+1
m = 00 (45)

and

KnB
2n−1
m+1
m = 0n −

n−1∑
i=0

Ki
B

2i−1
m+1
m

(n− i)!
0
(

2i−1
m+1 + n− i)
0
(

2i−1
m+1

) (46)

following from the comparison of the series (4) and (12). We note that the coefficientKn
depends on the coefficients00, . . . , 0n and vice versa. With increasingn, theKn coefficients
go to zero more quickly than the0n coefficients and cancellation of large terms in equation (46)
requires very high computational accuracy. In our calculations, we used 250 decimal digits
accuracy. The accuracy of the energyE(β) given by equation (4) is similar to that achieved
in [33, 34] by means of the numerical integration of the Bloch equation (about 70 digits for
β = 1).

Until now, only a small number of theKn coefficients have been computed (see e.g.
[12, 21, 30, 32, 35–38]). For this reason, we calculated theKn coefficients for the ground and
first excited states of the quartic, sextic, octic and decadic oscillators (see tables 7 and 8). We
note that the absolute values of these coefficients go down with increasingnmore rapidly than
in case of the0n coefficients (cf tables 7 and 8 with tables 1 and 2 and [18]). With increasing
m andK, the coefficientsKn go down more quickly than for the ground state of the quartic
oscillator (m = 2 andK = 0). It is seen that about 20 first terms of the series (4) are sufficient
to achieve very high accuracy of the energy (4) forβ > 1.

The large-order analysis of the ground stateKn coefficients (table 7) was performed in [24].
Here, also we perform a similar analysis for the first excited state (table 8). The corresponding
values of the branch pointsz0, βmin and the constantsc1, . . . , c4 in equation (21) are given in
table 9. It is seen that the values of the coefficientsci go down with increasingi so that our
restriction to a few terms in the expansion (21) is justified. The coefficientsci depend slightly on
n0 so that their values are less reliable than the values ofzK andβmin. Because of the prefactor
β1/(m+1) in equation (4) which goes to zero forβ → 0, the expansion

∑
n Knβ

−2n/(m+1) must
diverge forβ → 0 whenE(0) = 2K + 1. It is seen from table 9 thatβmin goes down with
increasingm in agreement with the behaviour of the prefactorβ1/(m+1) which goes to zero
more slowly ifm is increased.

4.1.2. Excited states of the quartic oscillator.In contrast to the0n coefficients, dependence of
the coefficientsKn onm andK is more complex. To clarify theirK-dependence, we computed
100Kn coefficients for higher excited states (K = 2, . . . ,10) of the quartic oscillator (see
table 10). It is seen that the coefficientsKn for largeK go down with increasingnmore rapidly
than the coefficients0n shown in table 6.
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Table 7. Selected values of the coefficientsKn for the ground state (K = 0) of the quartic, sextic,
octic and decadic oscillators (m = 2, 3, 4, 5).

m = 2 m = 3 m = 4 m = 5
n Kn Kn Kn Kn

0 1.060 362 090 4 1.144 802 453 7 1.225 820 113 8 1.298 843 700 6
1 0.362 022 648 7 0.307 920 303 7 0.277 118 934 3 0.256 647 384 3
2 −0.345 102 627 2e−1 −0.185 416 643 1e−1 −0.126 322 842 6e−1 −0.966 539 385 8e−2
3 0.519 530 271 0e−2 0.155 974 219 5e−2 0.750 441 570 4e−3 0.454 884 856 8e−3
4 −0.830 834 446 3e−3 −0.123 901 174 3e−3 −0.385 978 159 5e−4 −0.174 023 066 4e−4
5 0.129 111 907 7e−3 0.797 194 882 5e−5 0.127 080 594 2e−5 0.320 604 093 1e−6
6 −0.184 894 634 4e−4 −0.267 672 848 9e−6 0.247 628 889 9e−7 0.207 577 396 1e−7
7 0.226 366 476 0e−5 −0.251 217 514 9e−7 −0.824 648 630 3e−8 −0.262 918 217 6e− 8
8 −0.188 772 014 8e−6 0.632 251 434 0e−8 0.752 942 635 0e−9 0.148 693 421 1e−9
9 −0.652 387 107 2e−8 −0.762 588 422 7e−9 −0.381 276 272 7e−10 −0.324 258 771 5e−11

10 0.777 550 922 9e−8 0.589 732 972 7e−10 0.440 371 083 8e−14 −0.280 139 814 3e−12
20 −0.728 030 338 0e−15 0.101 917 009 9e−19 −0.479 519 644 7e−22 −0.838 178 795 1e−24
40 0.753 983 426 9e−29 −0.459 445 426 1e−39 0.108 237 647 7e−43 0.534 929 336 7e−47
60 −0.119 652 484 8e−42 −0.886 045 027 3e−57 0.367 032 022 8e−65 −0.449 529 332 7e−70
80 0.220 371 222 4e−56 −0.476 581 002 1e−75 −0.112 061 465 0e−85 0.292 188 679 2e−93

100 −0.428 794 376 1e−70 −0.174 562 472 9e−93 0.130 117 803 9e−106 0.189 397 346 7e−116

Table 8. Selected values of the coefficientsKn for the first excited state (K = 1) of the quartic,
sextic, octic and decadic oscillators (m = 2, 3, 4, 5).

m = 2 m = 3 m = 4 m = 5
n Kn Kn Kn Kn

0 3.799 673 029 8 4.338 598 711 5 4.755 874 413 9 5.097 876 529 2
1 0.901 605 895 8 0.718 220 132 3 0.627 299 876 8 0.571 825 765 7
2 −0.574 830 897 3e−1 −0.243 956 823 1e−1 −0.147 491 062 4e−1 −0.105 411 773 1e−1
3 0.549 274 610 2e−2 0.999 479 525 6e−3 0.355 337 961 4e−3 0.176 289 730 7e−3
4 −0.513 896 977 0e−3 −0.262 855 964 1e−4 −0.215 636 160 2e−5 0.452 972 396 5e−6
8 0.397 970 158 8e−4 −0.522 469 402 0e−6 −0.319 401 686 1e−6 −0.138 645 169 3e−6
6 −0.164 663 897 4e−5 0.110 672 835 1e−6 0.150 736 375 1e−7 0.302 726 736 7e−8
7 −0.179 706 613 5e−6 −0.594 143 419 4e−8 −0.228 150 685 9e−10 0.801 921 428 6e−10
8 0.559 964 386 1e−7 −0.441 005 734 7e−13 −0.292 862 695 9e−10 −0.614 766 142 6e−11
9 −0.817 574 433 4e−8 0.255 393 681 2e−10 0.130 247 317 3e−11 0.654 670 770 1e−13

10 0.733 621 976 6e−9 −0.200 288 119 9e−11 0.989 293 173 0e−14 0.709 658 594 3e−14
20 0.715 133 092 5e−18 0.803 323 203 7e−23 −0.101 536 175 8e−25 0.176 597 690 4e−28
40 −0.484 265 453 0e−34 0.366 914 884 4e−45 0.572 384 123 3e−51 −0.836 618 503 0e−55
60 −0.274 088 828 7e−50 0.199 679 344 8e−67 −0.506 457 559 7e−76 −0.192 095 977 7e−82
80 −0.480 006 056 6e−67 0.347 575 736 2e−90 0.537 053 919 1e−101 0.101 673 648 6e−108

100 0.412 350 251 3e−83 −0.200 998 745 8e−111 −0.628 371 240 1e−126 0.436 373 942 2e−136

We investigated also the large-order behaviour of theKn coefficients. Our numerical
calculations (see tables 7 and 10) show that the large-order coefficientsKn for K = 0 and
K = 2 obey with a high accuracy the relation

KK=0
n = −KK=2

n . (47)

We verified that, in agreement with [23], the values of the branch pointszK andβmin are the
same forK = 0 andK = 2. At the same time, the coefficientscK=2

i in equation (21) for
K = 2 obey the equation

cK=2
i = −cK=0

i i = 1, . . . ,4. (48)
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Table 9. The square-root branch pointz1, βmin and the coefficientsc1, . . . , c4 in the large-order
formula (21) describing the large-order behaviour of the coefficientsKn for the first excited state
(K = 1) of the quartic, sextic, octic and decadic oscillators (m = 2, 3, 4, 5). The values of the
coefficientsci were calculated by the method described in [24] forn = n0.

m n0 z1 βmin c1 c2 c3 c4

2 106 −4.987 283 7 + 4.023 154 3i 0.061 651 769 −0.796 90 0.144e−1 0.1e−3 0.5e−6
3 85 −7.029 103 9 + 10.021 258 3i 0.006 674 056 1 −0.507 007 0.7e−3 −0.1e−5 −0 .2e−8
4 88 −7.863 810 32 + 15.461 323 1i 0.000 797 970 16−0.386 025 0.882e−4 0.1e−7 0.2e−9
5 85 −8.255 474 46 + 20.056 268 3i 0.000 098 014 351−0.352 687 0.592e−4 0.5e−8 0.6e−10

ForK > 3, the large-order behaviour of theKn coefficients can be described by equations (18)
or (21) only approximately. To suppress the contribution of the other branch points [23] it
would be necessary to considern much larger than 100 or to generalize equation (21) to a
larger number of the branch points.

4.2. Wavefunctionsψn

The wavefunctionsψn for the ground state of the quartic oscillator corresponding toH0 =
p2 + x4,H1 = x2 andλ = β−2/(m+1) are shown in figure 2.

First we note that, in contrast to the functionsψn in the renormalized case (figure 1), the
functionsψn in figure 2 change their sign. It is seen that maxima or minima of these functions
shift with increasingn to larger values ofx, however, this shift is less significant than in the
renormalized case. Finally, we see that the norm of the functionsψn in figure 2 goes to zero
with increasingn more rapidly than for the functions in figure 1.

Thus, the resulting situation is more complex than in the renormalized case. Terms in
the equation for theKn coefficients analogous to equation (44) have different signs and their
cancellation can be expected. As a result, different signs of theKn coefficients and rapidly
decreasing absolute values of the coefficients with increasingn are obtained (see tables 7 and
8).

5. Conclusions

In this paper, we performed detailed numerical analysis of the convergent strong coupling
expansions (4) and (12) of the energiesE(β) andER(κ) for the anharmonic oscillators. Except
for the expansion coefficients0n andKn, we also discussed the corresponding perturbation
wavefunctions.

The ground and first excited states of the quartic, sextic, octic and decadic oscillators were
investigated. The higher excited states of the quartic oscillator were also discussed.

For these cases, the expansion coefficients0n andKn, the large-order formulae for the
coefficients, the radii of convergence of the perturbation series, the perturbation wavefunctions
and the summation rules were investigated.

The properties of the renormalized strong coupling expansion (12) can be summarized as
follows:

• This expansion converges for allκ ∈ (0, 2); it means that it converges for allβ ∈ (0,∞)
corresponding toκ ∈ (0, 1) and for the double-well potentialsV (x) = κx2m/Bm − (κ −
1)x2 in the renormalized HamiltonianHR corresponding toκ ∈ (1, 2).
• The large-order formula (14) is analytic. It is at least qualitatively applicable fromn of

the order of ten.
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Figure 2. The perturbation wavefunctionsψn multiplied by (−1)n for the ground state of the
quartic oscillator with the ordinary HamiltonianH = β1/3[H0 + β−2/3H1], whereH0 = p2 + x4

andH1 = x2. Because of the symmetry of the functionsψn, only thex > 0 part of the functions
is shown. (a) n = 0, 1, (b) n = 2, . . . ,4, (c) n = 5, . . . ,7, (d) n = 21, . . . ,23. In case (d), the
functions are multiplied by 1010.
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Figure 2. (Continued)
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• Truncation of the series (12) yields the upper bounds to the exact value of the energy
ER(κ).
• The sum of the truncated series plus the remainder of the series in which equation (14) is

used gives the lower bounds to the energyER(κ).
• The perturbation wavefunctionsψn have a simple form which clarifies the sign pattern of

the0n coefficients. Truncating the perturbation series (42) one can make the error caused
by the truncation arbitrarily small.
• The transformation (6) and the large-order formula (14) depend on the constantBm.

The value (7) of this constant which was optimized for the ground state leads to slower
convergence of the series (12) for higher excited states. For these states, another value of
the constantBm can be taken to improve the convergence of the series (12).

In comparison with the renormalized strong coupling expansion (12), the ordinary strong
coupling expansion (4) has the following properties:

• The expansion converges for allβ ∈ (βmin,∞) corresponding toz ∈ (0, |zK |) in
equation (19). This series converges also forz ∈ (−|zK |, 0) corresponding to the double-
well potentialV (x) = x2m − |z|x2. The value ofβmin decreases with increasingm and
K.
• The large-order formula (21) depends on the branch pointzK and coefficientsci which

are not known analytically.
• The application of this formula to higher excited states is possible for very largen only;

for smallern, the extension of equation (21) to larger number of the branch points is
necessary.
• Truncation of the series (4) does not give the upper or lower bounds to the energyE(β).
• The perturbation wavefunctions have a more complex form than in the renormalized case

and have a less straightforward interpretation.
• With increasingn, the perturbation coefficientsKn go to zero more rapidly than the

coefficients0n. However, it does not necessarily mean more rapid convergence of the
series (4) with respect to the series (12) since it also depends on the values of the expansion
variablesβ−2/(m+1) and 1− κ.

Our results show that the renormalized strong coupling expansion (12) is the most
advantageous perturbative approach to the anharmonic oscillators. At the same time, it
represents a non-trivial example of the perturbation theory which converges for all values
of the coupling constantβ > 0 and has some other useful properties. Since the anharmonic
oscillators are important model systems not only in quantum mechanics and quantum field
theory but also in many applications (see e.g. [39–42]), we believe that our results contribute
to a deeper understanding of the large-order perturbation theories in general.
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[18] Skála L,Čı́žek J, Kapsa V and Weniger E J 1997Phys. Rev.A 564471
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[37] Ferńandez F M and Guardiola R 1993J. Phys. A: Math. Gen.267169
[38] Janke W and Kleinert H 1995Phys. Rev. Lett.752787
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