Strong coupling perturbation expansions for anharmonic oscillators. Numerical results

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 325715
(http://iopscience.iop.org/0305-4470/32/30/314)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.105
The article was downloaded on 02/06/2010 at 07:38

Please note that terms and conditions apply.

Strong coupling perturbation expansions for anharmonic oscillators. Numerical results

L Skála $\dagger \ddagger$, J Čížek $\dagger \ddagger$ and J Zamastil \dagger
\dagger Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague 2, Czech Republic
\ddagger Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Received 25 March 1999

Abstract

The strong coupling expansion coefficients for the ordinary and renormalized energies of the ground and first excited states of the quartic, sextic, octic and decadic anharmonic oscillators with the Hamiltonian $H=p^{2}+x^{2}+\beta x^{2 m}, m=2,3,4,5$ are computed. The expansion coefficients are also computed for higher excited states of the quartic oscillator. The large-order behaviour of the coefficients, the radii of convergence of the series and the summation rules for the coefficients are discussed. It is shown that, in contrast to the divergent weak coupling expansions, the renormalized strong coupling perturbation wavefunctions have simple form and straightforward physical interpretation. Finally, both the strong coupling perturbation approaches are compared.

1. Introduction

In this paper, we investigate the Schrödinger equation

$$
\begin{equation*}
H \psi=E(\beta) \psi \tag{1}
\end{equation*}
$$

for the anharmonic oscillators, where

$$
\begin{equation*}
H=p^{2}+x^{2}+\beta x^{2 m} \quad \beta \geqslant 0 \quad m \geqslant 2 \tag{2}
\end{equation*}
$$

and $p=-\mathrm{id} / \mathrm{d} x$.
As is well known, the ordinary energy $E(\beta)$ can be expressed as a weak coupling perturbation series in powers of β,

$$
\begin{equation*}
E(\beta)=\sum_{n=0}^{\infty} b_{n} \beta^{n} \tag{3}
\end{equation*}
$$

which diverges for every $\beta>0$ (see, e.g., [1-7]). The energy $E(\beta)$ also possesses the strong coupling expansion (see, e.g., $[2,3,6]$)

$$
\begin{equation*}
E(\beta)=\beta^{1 /(m+1)} \sum_{n=0}^{\infty} K_{n} \beta^{-2 n /(m+1)} \tag{4}
\end{equation*}
$$

corresponding to an equivalent Hamiltonian

$$
\begin{equation*}
H=\beta^{1 /(m+1)}\left(p^{2}+\beta^{-2 /(m+1)} x^{2}+x^{2 m}\right) \tag{5}
\end{equation*}
$$

which can be obtained from equation (2) by means of the scaling transformation $x \rightarrow$ $\beta^{-1 /[2(m+1)]} x$. The series (4) converges if β is sufficiently large i.e. if $\beta>\beta_{\text {min }}$, where $\beta_{\text {min }}>0$.

Alternative perturbative approaches based upon renormalization (Wick ordering [8] or scaling [5, 9-12]) have considerable advantages. The renormalization can be introduced by means of a new coupling constant κ related to β by the equation [9-12]

$$
\begin{equation*}
\beta=\frac{\kappa}{B_{m}(1-\kappa)^{(m+1) / 2}} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{m}=m(2 m-1)!!/ 2^{m-1} \tag{7}
\end{equation*}
$$

This transformation maps the original unbounded interval $\beta \in[0, \infty)$ onto the bounded interval $\kappa \in[0,1$) (see also [13-16]). With the help of equation (6), the Hamiltonian (2) can be expressed in terms of a renormalized Hamiltonian H_{R}

$$
\begin{equation*}
H=\frac{H_{R}}{(1-\kappa)^{1 / 2}} \tag{8}
\end{equation*}
$$

where
$H_{R}=p^{2}+x^{2}+\kappa\left(x^{2 m} / B_{m}-x^{2}\right)=p^{2}+x^{2 m} / B_{m}+(1-\kappa)\left(x^{2}-x^{2 m} / B_{m}\right)$.
The renormalized energy

$$
\begin{equation*}
E_{R}(\kappa)=(1-\kappa)^{1 / 2} E(\beta) \tag{10}
\end{equation*}
$$

can either be expressed as a renormalized weak coupling expansion in κ

$$
\begin{equation*}
E_{R}(\kappa)=\sum_{n=0}^{\infty} c_{n} \kappa^{n} \tag{11}
\end{equation*}
$$

or as a renormalized strong coupling expansion in $1-\kappa$

$$
\begin{equation*}
E_{R}(\kappa)=\sum_{n=0}^{\infty} \Gamma_{n}(1-\kappa)^{n} \tag{12}
\end{equation*}
$$

The weak coupling expansion (11) diverges almost as strongly as the weak coupling expansion (3) $[8,11,17]$. However, the strong coupling expansion (12) has some very useful properties [12, 18-20].

For the ground and first excited states of the quartic anharmonic oscillator, we numerically computed 200 coefficients Γ_{n} [18]. From these data, we obtained the large-order formula for the Γ_{n} coefficients of the quartic oscillator

$$
\begin{equation*}
\Gamma_{n}=-\frac{12^{K}}{K!} \frac{4 \sqrt{6}}{\pi e^{2}}(2 n)^{(K-1) / 2} \mathrm{e}^{-2 \sqrt{2 n}} \tag{13}
\end{equation*}
$$

where $K=0,1,2, \ldots$ is the index of excitation.
This formula was generalized to an arbitrary m and B_{m} in [19]

$$
\begin{equation*}
\Gamma_{n}=-\frac{2^{K+3 / 2} a^{K+1 / 2} b}{\pi K!\sqrt{m}}(b n)^{\left(\frac{K+1}{m}-1\right)} \mathrm{e}^{-\left[\frac{m}{m-1}(b n)^{1 / m}\right]} \quad m \geqslant 3 \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
a=\frac{\Gamma(2 m /(m-1))}{\Gamma^{2}(m /(m-1))} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
b=4(m-1) B_{m} a^{1-m} . \tag{16}
\end{equation*}
$$

For $m=2$, the right-hand side of equation (14) has to be divided by e^{2}. For $m=2,3,4,5$ and $K=0,1$, we compared equation (14) with the computed coefficients Γ_{n} and performed the
asymptotic analysis of the ratio of the numerical values of Γ_{n} and the values following from equation (14) (see [19]). The large-order formula (14) was also used in the summation rule

$$
\begin{equation*}
\Sigma_{0}=\sum_{n=0}^{\infty} \Gamma_{n}=2 K+1 \tag{17}
\end{equation*}
$$

valid for arbitrary $m=2,3, \ldots$ It was shown in [19] that: (1) Equation (14) can be used at least qualitatively from n of the order of ten; (2) the absolute value of equation (14) is an upper bound to the absolute values of the actual Γ_{n} coefficients; (3) the asymptotic behaviour of the numerical coefficients Γ_{n} is given by equation (14); (4) the use of equation (14) in the summation rule (17) improves its accuracy, (5) finally, the results of [12, 18-20] show that, in contrast to the strong coupling expansion (4), the renormalized strong coupling expansion (12) converges for arbitrary $m \geqslant 2, K \geqslant 0$ and $\kappa \in(0,2)$.

The large-order behaviour of the K_{n} coefficients was investigated in [21], where the largeorder formula for the K_{n} coefficients

$$
\begin{equation*}
K_{n}=A \frac{\cos (n \varphi+\delta)}{\left|z_{K}\right|^{n} n^{3 / 2}} \tag{18}
\end{equation*}
$$

where $\varphi=\arg z_{K}$ was derived. Here, A and δ are constants, z_{K} denotes the complex squareroot branch point of the energy $\epsilon(z)$ of a given state K with the smallest distance to the origin [1-3,22]

$$
\begin{equation*}
\epsilon(z)=\beta^{-1 /(m+1)} E(\beta)=\sum_{n=0}^{\infty} K_{n} z^{n} \tag{19}
\end{equation*}
$$

and $z=\beta^{-2 /(m+1)}$. The values of $z_{0}=z_{2}$ and z_{4} of the quartic oscillator are known from [23]. The value of the branch point z_{0} is also known for the sextic, octic and decadic oscillators [24]. The importance of the branch point z_{K} follows from the fact that it determines the minimal value of β for which the series (4) converges. It follows from equations (4) and (18) that

$$
\begin{equation*}
\beta_{\min }=\frac{1}{\left|z_{K}\right|^{(m+1) / 2}} \tag{20}
\end{equation*}
$$

It was shown in [24] that the general large-order formula for the K_{n} coefficients reads

$$
\begin{equation*}
K_{n}=\frac{1}{\left|z_{K}\right|^{n-1}}\left[c_{1} C_{n}^{(-1 / 2)}(\cos \varphi)+c_{2}\left|z_{K}\right|^{2} C_{n}^{(-3 / 2)}(\cos \varphi)+\cdots\right] \tag{21}
\end{equation*}
$$

where $C_{n}^{(\alpha)}(x)$ are the Gegenbauer polynomials. Further, it was shown in [24] that equation (21) can also be written in the form
$K_{n}=\frac{1}{\left|z_{K}\right|^{n-1} n^{3 / 2}}\left[\left(e_{1}+e_{2} / n+e_{3} / n^{2}+\cdots\right) \cos (n \varphi)+\left(f_{1}+f_{2} / n+f_{3} / n^{2}+\cdots\right) \sin (n \varphi)\right]$
where e_{i} and f_{i} are constants. Taking only the leading term proportional to $1 / n^{3 / 2}$, this equation yields (18) with $A=\left|z_{K}\right| \sqrt{e_{1}^{2}+f_{1}^{2}}$ and $\cos \delta=e_{1} / \sqrt{e_{1}^{2}+f_{1}^{2}}$. A general accurate method of calculating the value of the branch point z_{K} from the numerical values of the K_{n} coefficients was suggested in [24].

The main purpose of this paper is to perform detailed numerical analysis of the convergent strong coupling expansions (4) and (12) and the corresponding wavefunctions which have not been investigated until now. First, we describe the numerical method used for computing the expansion coefficients (section 2). The large-order behaviour of the renormalized strong coupling coefficients Γ_{n}, the radii of convergence of the series (12), the sign pattern of the coefficients, the summation rules for the coefficients and the perturbation wavefunctions are
discussed in section 3. In section 4, we discuss the large-order behaviour of the ordinary strong coupling expansion coefficients K_{n}, calculate z_{K} and $\beta_{\text {min }}$ for the final excited state and investigate the perturbation wavefunctions. In the conclusion, both the strong coupling perturbative approaches are compared.

2. Numerical method

We assume the usual formulation of the perturbation theory

$$
\begin{equation*}
H \psi=E \psi \tag{23}
\end{equation*}
$$

where

$$
\begin{align*}
& H=H_{0}+\lambda H_{1} \tag{24}\\
& \psi=\psi_{0}+\lambda \psi_{1}+\lambda^{2} \psi_{2}+\cdots \tag{25}
\end{align*}
$$

and

$$
\begin{equation*}
E=E_{0}+\lambda E_{1}+\lambda^{2} E_{2}+\cdots \tag{26}
\end{equation*}
$$

The well known equations for the perturbation energies E_{n} and wavefunctions ψ_{n} read

$$
\begin{equation*}
H_{0} \psi_{0}=E_{0} \psi_{0} \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{0} \psi_{n}+H_{1} \psi_{n-1}=\sum_{i=0}^{n} E_{i} \psi_{n-i} \quad n=1,2, \ldots \tag{28}
\end{equation*}
$$

Our numerical method was formulated in [25,26] and commented in [27-30]. We assume that equations (27) and (28) are numerically integrated from the point $-x_{0}$ to the point x_{0} with the boundary conditions

$$
\begin{equation*}
\psi_{n}\left(-x_{0}\right)=d \quad \psi_{n}\left(x_{0}\right)=0 \quad n=0,1, \ldots \tag{29}
\end{equation*}
$$

Here, x_{0} is a sufficiently large number and d is a constant different from zero. We also assume that the wavefunctions ψ_{i} and perturbation corrections E_{i} are already calculated for $i=0, \ldots, n-1$. Then, it follows from equation (28) that the wavefunction ψ_{n} depends not only on the coordinate x but also on the perturbation energy E_{n} taken as a parameter

$$
\begin{equation*}
\psi_{n}=\psi_{n}\left(E_{n}, x\right) \tag{30}
\end{equation*}
$$

It was shown in $[25,26]$ that the function $\psi_{n}\left(E_{n}, x_{0}\right)$ is a linear function of the parameter E_{n}

$$
\begin{equation*}
\psi_{n}\left(E_{n}, x_{0}\right)=\psi_{n}\left(E_{n}^{\prime}, x_{0}\right)+\left(E_{n}-E_{n}^{\prime}\right) F\left(x_{0}\right) . \tag{31}
\end{equation*}
$$

Taking $E_{n}^{\prime}=0$ and assuming in agreement with equation (29) $\psi_{n}\left(E_{n}, x_{0}\right)=0$ we get the equation for the sought value of E_{n} for which the boundary condition $\psi_{n}\left(x_{0}\right)=0$ is obeyed:

$$
\begin{equation*}
E_{n}=\frac{-\psi_{n}\left(0, x_{0}\right)}{F\left(x_{0}\right)} \quad n \geqslant 1 \tag{32}
\end{equation*}
$$

To compute E_{n}, only the values of the functions $\psi_{n}\left(0, x_{0}\right)$ and $F\left(x_{0}\right)$ are needed. The value of $F\left(x_{0}\right)$, which is independent of n, can easily be calculated from equation (31) for two arbitrarily chosen values of E_{n} and $E_{n}^{\prime}, E_{n} \neq E_{n}^{\prime}$ and $n=1$.

Equation (28) can be solved with the usual orthogonalization condition (see our discussion in [26]):

$$
\begin{equation*}
\left\langle\psi_{0} \mid \psi_{n}\right\rangle=\delta_{n 0} . \tag{33}
\end{equation*}
$$

However, it is obvious that this modification of the algorithm used in [30] has no effect on the values of the energies E_{n}. Thus, as far as the perturbation energies are concerned, the use of equation (33) is not necessary and only increases the computational time. As we show in the following section, the application of equation (33) may not be convenient even from the point of view of the wavefunctions when simple physical interpretation of the wavefunctions ψ_{n} can be lost.

The renormalized strong coupling case is obtained for $H_{0}=p^{2}+x^{2 m} / B_{m}, H_{1}=$ $x^{2}-x^{2 m} / B_{m}$ and $\lambda=1-\kappa$. Analogously, the ordinary strong coupling case is obtained for $H_{0}=p^{2}+x^{2 m}, H_{1}=x^{2}$ and $\lambda=\beta^{-2 /(m+1)}$.

3. Renormalized strong coupling case

3.1. Coefficients Γ_{n}

3.1.1. Ground and first excited states. Calculation of the coefficients Γ_{n} is difficult and, except for the quartic oscillator [18], only a limited number of these coefficients has been computed $[12,19]$. Using the method described in section 2, we are able to compute a large number of the Γ_{n} coefficients for an arbitrary oscillator with the Hamiltonian (9). Since the quartic case was investigated in detail in [18] we limit ourselves to the discussion of the coefficients Γ_{n} for the ground and first excited states ($K=0,1$) of the sextic, octic and decadic oscillators ($m=3,4,5$).

According to our experience, the usual computational accuracy does not yield reliable results at large orders of the perturbation theory (n about 100 and larger). For this reason, we used the language Maple with an adjustable number of decimal digits. We used 100 digits accuracy for the sextic oscillator, 125 digits for the octic oscillator and 175 digits for the decadic oscillator. The values of x_{0} were taken $x_{0}=6.2$ for the sextic oscillator, $x_{0}=5.9$ for the octic oscillator and $x_{0}=5.4$ for the decadic oscillator. The resulting accuracy of the Γ_{n} coefficients is at least 50 digits which is necessary for the reliable computation of the K_{n} coefficients from the Γ_{n} coefficients (see section 4.1.1).

Selected coefficients Γ_{n} for the ground and first excited states of the sextic, octic and decadic oscillators are shown in tables 1 and 2. Similarly to the Γ_{n} coefficients for the quartic oscillator [18], the first two coefficients for the ground state of the sextic, octic and decadic oscillators are positive. However, in contrast to the quartic oscillator, the ground state coefficient Γ_{3} is positive for these oscillators. In case of the first excited state, the sign pattern of the Γ_{n} coefficients for the sextic, octic and decadic oscillators is the same as for the quartic oscillator. We note that beginning with $n=4$ for the ground state and $n=2$ for the first excited state, all the coefficients Γ_{n} are negative in agreement with the large-order formula (14).

The accuracy of the computed coefficients Γ_{n} can be tested by means of the summation rules [12, 18]

$$
\begin{equation*}
\Sigma_{j}=\sum_{n=0}^{\infty}\left[n(n-1) \ldots(n-j+1) \Gamma_{n}\right]=(-1)^{j} j!c_{j} . \tag{34}
\end{equation*}
$$

From the numerically computed coefficients Γ_{n}, we can calculate only the partial sums

$$
\begin{equation*}
\Sigma_{j}^{(N)}=\sum_{n=0}^{N}\left[n(n-1) \ldots(n-j+1) \Gamma_{n}\right] . \tag{35}
\end{equation*}
$$

In tables 3 and 4 , the values of $\Sigma_{j}^{(N)}$ for $N=125$ and $j=0,1$ are compared with the exact

Table 1. Selected values of the coefficients Γ_{n} for the ground state ($K=0$) of the sextic, octic and decadic oscillators ($m=3,4,5$).

n	$\begin{aligned} & m=3 \\ & \Gamma_{n} \end{aligned}$	$\begin{aligned} & m=4 \\ & \Gamma_{n} \end{aligned}$	$\begin{aligned} & m=5 \\ & \Gamma_{n} \end{aligned}$
0	0.6250898125	0.5551302360	0.5033189176
1	0.4076591806	0.5008987617	0.5784069954
2	-0.315 $1647679 \mathrm{e}-1$	$-0.5803753396 \mathrm{e}-1$	$-0.9066695182 \mathrm{e}-1$
3	$0.6429296807 \mathrm{e}-3$	$0.4575662071 \mathrm{e}-2$	$0.1203727649 \mathrm{e}-1$
4	-0.553 $4053670 \mathrm{e}-3$	-0.571 $2626540 \mathrm{e}-3$	$-0.7944499387 \mathrm{e}-3$
5	-0.3929217186e-3	-0.525 $8289771 \mathrm{e}-3$	-0.7696184716e-3
6	-0.2440974167e-3	-0.272 $1731611 \mathrm{e}-3$	$-0.1453710122 \mathrm{e}-3$
7	$-0.1677666667 e-3$	-0.214 $1870167 \mathrm{e}-3$	$-0.2003378857 \mathrm{e}-3$
8	-0.1187679167e-3	-0.164 $6495230 \mathrm{e}-3$	-0.163 $5840630 \mathrm{e}-3$
9	-0.862 $0062776 \mathrm{e}-4$	-0.127 $5570165 \mathrm{e}-3$	$-0.1250369864 \mathrm{e}-3$
10	-0.639829 9520e-4	-0.101300 $5835 \mathrm{e}-3$	-0.104 $0245073 \mathrm{e}-3$
20	$-0.6726918325 \mathrm{e}-5$	-0.184 $8128698 \mathrm{e}-4$	$-0.2469621379 \mathrm{e}-4$
40	-0.3979361444e-6	$-0.2434674741 \mathrm{e}-5$	$-0.4662624417 \mathrm{e}-5$
60	$-0.5552344203 \mathrm{e}-7$	-0.6319487479e-6	$-0.1581408038 \mathrm{e}-5$
80	-0.116764 $8421 \mathrm{e}-7$	-0.224282875 1e-6	$-0.6992502138 \mathrm{e}-6$
100	-0.3147670494e-8	-0.9573805746e-7	$-0.3607688672 \mathrm{e}-6$
125	-0.771 $1741190 \mathrm{e}-9$	-0.391 $1521130 \mathrm{e}-7$	$-0.1813824820 \mathrm{e}-6$

Table 2. Selected values of the coefficients Γ_{n} for the first excited state $(K=1)$ of the sextic, octic and decadic oscillators ($m=3,4,5$).

	$m=3$	$m=4$	$m=5$
n	Γ_{n}	Γ_{n}	Γ_{n}
0	2.3689797714	2.1537660021	1.9754938148
1	0.7231183110	0.9544295125	1.1463806319
2	$-0.4310815291 \mathrm{e}-1$	$-0.5406868231 \mathrm{e}-1$	$-0.7239533963 \mathrm{e}-1$
3	$-0.1582814757 \mathrm{e}-1$	$-0.1378596641 \mathrm{e}-1$	$-0.1077167390 \mathrm{e}-1$
4	$-0.9343233523 \mathrm{e}-2$	$-0.8593116466 \mathrm{e}-2$	$-0.6544300772 \mathrm{e}-2$
5	$-0.6048782495 \mathrm{e}-2$	$-0.6060393067 \mathrm{e}-2$	$-0.4999393936 \mathrm{e}-2$
6	$-0.4128132415 \mathrm{e}-2$	$-0.4438896853 \mathrm{e}-2$	$-0.3813944631 \mathrm{e}-2$
7	$-0.2933016648 \mathrm{e}-2$	$-0.3362914351 \mathrm{e}-2$	$-0.2984781188 \mathrm{e}-2$
8	$-0.2150434213 \mathrm{e}-2$	$-0.2618477891 \mathrm{e}-2$	$-0.2395800733 \mathrm{e}-2$
9	$-0.1616873909 \mathrm{e}-2$	$-0.2084144850 \mathrm{e}-2$	$-0.1961865182 \mathrm{e}-2$
10	$-0.1241082096 \mathrm{e}-2$	$-0.1689049873 \mathrm{e}-2$	$-0.1632929554 \mathrm{e}-2$
20	$-0.1698259056 \mathrm{e}-3$	$-0.3653828229 \mathrm{e}-3$	$-0.4373334554 \mathrm{e}-3$
40	$-0.1366227904 \mathrm{e}-4$	$-0.5928269084 \mathrm{e}-4$	$-0.9627018577 \mathrm{e}-4$
60	$-0.2288710008 \mathrm{e}-5$	$-0.1750771335 \mathrm{e}-4$	$-0.3600103214 \mathrm{e}-4$
80	$-0.5460090675 \mathrm{e}-6$	$-0.6810958588 \mathrm{e}-5$	$-0.1708446123 \mathrm{e}-4$
100	$-0.1618033067 \mathrm{e}-6$	$-0.3119569878 \mathrm{e}-5$	$-0.9312902354 \mathrm{e}-5$
125	$-0.4344404508 \mathrm{e}-7$	$-0.1366117659 \mathrm{e}-5$	$-0.4946040374 \mathrm{e}-5$

values of the sums Σ_{0} and Σ_{1} given by equation (17) and by the equation

$$
\begin{equation*}
\Sigma_{1}=\sum_{n=0}^{\infty} n \Gamma_{n}=-c_{1} . \tag{36}
\end{equation*}
$$

For $K=0$ and $K=1$, the coefficient c_{1} is given by the equation

$$
\begin{equation*}
c_{1}=\frac{\left\langle\varphi_{0}\right| x^{2 m} / B_{m}-x^{2}\left|\varphi_{0}\right\rangle}{\left\langle\varphi_{0} \mid \varphi_{0}\right\rangle}=-\frac{m-1}{2 m} \tag{37}
\end{equation*}
$$

Table 3. Summation rules for the coefficients Γ_{n} for the ground state of the quartic, sextic, octic and decadic oscillators ($m=2,3,4,5$). Σ_{j} is the exact value of the summation rule for the infinite number of terms, $\Sigma_{j}^{(N)}$ denotes the partial sum for $n=0, \ldots, N$ and $\Sigma_{j}^{L O}$ equals $\Sigma_{j}^{(N)}$ plus the rest of the sum in which the large-order formula (14) for $n=N+1, \ldots, 5000$ was used. Here, $N=125$.

	$m=2$	$m=3$		$m=4$		$m=5$	
${ }_{j} \Sigma_{j}$	$\Sigma_{j}^{(N)}-\Sigma_{j} \Sigma_{j}^{L O}-\Sigma_{j}$	$\Sigma_{j}^{(N)}-\Sigma_{j}$	$\Sigma_{j}^{L O}-\Sigma_{j}$	$\Sigma_{j}^{(N)}-\Sigma_{j}$	$\Sigma_{j}^{L O}-\Sigma_{j}$	$\Sigma_{j}^{(N)}-\Sigma_{j}$	$\Sigma_{j}^{L O}-\Sigma_{j}$
01	$0.339 \mathrm{e}-14-0.265 \mathrm{e}-15$	$0.160 \mathrm{e}-7$	$-0.805 \mathrm{e}-8$	$0.142 \mathrm{e}-5$	-0.298e-6	0.951e-5	$-0.139 \mathrm{e}-5$
$1 \frac{m-1}{2 m}$	$0.453 \mathrm{e}-12-0.354 \mathrm{e}-13$	$0.239 \mathrm{e}-5$	$-0.119 \mathrm{e}-5$	$0.245 \mathrm{e}-3$	$-0.493 \mathrm{e}-4$	0.191e-2	$-0.258 \mathrm{e}-3$

Table 4. Summation rules for the coefficients Γ_{n} for the first excited state of the quartic, sextic, octic and decadic oscillators $(m=2,3,4,5) . \Sigma_{j}$ is the exact value of the summation rule for the infinite number of terms, $\Sigma_{j}^{(N)}$ denotes the partial sum for $n=0, \ldots, N$ and $\Sigma_{j}^{L O}$ equals $\Sigma_{j}^{(N)}$ plus the rest of the sum in which the large-order formula (14) for $n=N+1, \ldots, 5000$ was used. Here, $N=125$.

	$m=2$	$m=3$	$m=4$	$m=5$
$j \Sigma_{j}$	$\Sigma_{j}^{(N)}-\Sigma_{j} \quad \Sigma_{j}^{L O}-\Sigma_{j}$	$\Sigma_{j}^{(N)}-\Sigma_{j} \Sigma_{j}^{L O}-\Sigma_{j}$	$\Sigma_{j}^{(N)}-\Sigma_{j} \Sigma_{j}^{L O}-\Sigma_{j}$	$\Sigma_{j}^{(N)}-\Sigma_{j} \Sigma_{j}^{L O}-\Sigma_{j}$
01	$0.582 \mathrm{e}-12-0.134 \mathrm{e}-12$	$0.965 \mathrm{e}-6-0.592 \mathrm{e}-6$	$0.543 \mathrm{e}-4-0.183 \mathrm{e}-4$	0.286e-3-0.849e-4
$1 \frac{m-1}{2 m}$	$0.780 \mathrm{e}-10-0.180 \mathrm{e}-10$	$0.145 \mathrm{e}-3-0.881 \mathrm{e}-4$	$0.958 \mathrm{e}-2-0.308 \mathrm{e}-2$	$0.603 \mathrm{e}-1-0.164 \mathrm{e}-1$

where $\left|\varphi_{0}\right\rangle$ is the unperturbed ground or first excited state wavefunction of the harmonic oscillator. It is seen from tables 3 and 4 that the difference $\Sigma_{j}^{(N)}-\Sigma_{j}$ is always positive in agreement with the negative sign of the coefficients Γ_{n} for large n. The agreement of $\Sigma_{j}^{(N)}$ and Σ_{j} is excellent for the ground state of the quartic oscillator ($K=0$ and $m=2$). This agreement goes down with increasing m and K as can be seen from equation (14) which shows that the series (12) converges less rapidly with increasing m and K. Comparing the $j=0$ and $j=1$ results we see that the $j=0$ case leads to better agreement than the $j=1$ case. Again, this result can be expected because of the increased contribution of the terms with large n in equation (36) in comparison with equation (17). Similarly to [18, 19], we also calculated the sums
$\Sigma_{j}^{L O}=\sum_{n=0}^{N}\left[n(n-1) \ldots(n-j+1) \Gamma_{n}\right]+\sum_{n=N+1}^{\infty}\left[n(n-1) \ldots(n-j+1) \Gamma_{n}\right]$
where we used the numerical values of the Γ_{n} coefficients in the first sum and the large-order formula (14) in the second sum. The infinite upper bound in the second sum was replaced by 5000 . It is seen that if the second sum is included into the summation rule its accuracy increases about one order. At the same time, the difference $\Sigma_{j}^{L O}-\Sigma_{j}$ is negative which shows that the absolute value of the large-order formula (14) is an upper bound to the actual values of the coefficients Γ_{n}.

It follows from this discussion that truncating the series (12) at some large n, we get an upper bound to the exact energy $E_{R}(\kappa)$. If we use the large-order formula (14) in the remainder of the series and add it to the truncated series we get the lower bound.

We also calculated the radius of convergence r of the series (12) (see also [19]). The ratio $\left|\Gamma_{n-1} / \Gamma_{n}\right|$ appearing in the d'Alembert convergence criterion was computed for the ground and first excited states of the quartic, sextic, octic and decadic oscillators for $n=109, \ldots, 125$. These values were extrapolated to $n \rightarrow \infty$ by means of the Thiele extrapolation built in Maple (see table 5). In the extrapolation, the variable $1 / n^{1 / m}$ appearing in equation (14) was used. It is

Table 5. The radius of convergence of the renormalized strong coupling expansion (12) obtained from the d'Alembert convergence criterion for the ground and first excited states $(K=0,1)$ of the quartic, sextic, octic and decadic oscillators ($m=2,3,4,5$).

	$m=2$	$m=3$	$m=4$	$m=5$
K	r	r	r	r
0	1.000006	1.00002	0.99998	0.9998
1	1.00002	1.00003	1.001	0.9995

seen from table 5 that this direct computation yields the values of r which are very close to one. This test independent of the large-order formula (14) confirms that the renormalized strong coupling expansion (12) converges for $\kappa \in(0,2)$. It agrees with our conclusions in [18-20].
3.1.2. Excited states of the quartic oscillator. We investigated the coefficients Γ_{n} for higher excited states of the quartic oscillator for $K=2, \ldots, 10$ (see table 6). It is seen that the coefficients Γ_{n} are, except for the $n=0, K=2, \ldots, 10$ and $n=1, K=2$ cases, negative. With increasing n, their behaviour can approximately be described by equation (14). However, the relative difference of the numerical values of Γ_{n} and equation (14) increases rapidly with increasing K. To achieve better agreement of the values of Γ_{n} and equation (14) it would be necessary to take into account corrections to the leading term as it was done in [18, 19] or to go to very large n. The absolute value of the Γ_{n} coefficients for $n=100$ is still relatively large. To get lower absolute values of the coefficients for large n it would be necessary to take another value of the constant $B_{m}=3$ which was optimized for the ground state [10].

We also verified that these coefficients Γ_{n} obey the summation rule (17) and that the expansion (12) converges for $\kappa \in(0,2)$ (see also [19, 20]).

3.2. Wavefunctions ψ_{n}

To the best of our knowledge, the wavefunctions of the anharmonic oscillator were investigated in [31] only, where the ground state wavefunctions for the quartic oscillator with the Hamiltonian H were investigated by means of the optimized δ expansion. For this reason, we decided to perform detailed analysis of the wavefunctions here. Our approach is more straightforward and transparent than that used in [31].

First we note that the form of the wavefunctions ψ_{n} depends on the form of the initial conditions and on the fact of whether or not the orthogonality condition (33) is applied. We found that the functions ψ_{n} have a simpler form with a straightforward interpretation if this condition is not applied.

In our calculations, we used the following initial conditions for the unperturbed wavefunction ψ_{0} :

$$
\begin{equation*}
\psi_{0}(x=0)=1 \quad \mathrm{~d} \psi_{0} / \mathrm{d} x(x=0)=0 \tag{39}
\end{equation*}
$$

for even parity states $(K=0,2, \ldots)$ and

$$
\begin{equation*}
\psi_{0}(x=0)=0 \quad \mathrm{~d} \psi_{0} / \mathrm{d} x(x=0)=1 \tag{40}
\end{equation*}
$$

for odd parity states $(K=1,3, \ldots)$. For the perturbation corrections ψ_{n} to ψ_{0} we used the conditions

$$
\begin{equation*}
\psi_{n}(x=0)=0 \quad \mathrm{~d} \psi_{n} / \mathrm{d} x(x=0)=0 \quad n \geqslant 1 . \tag{41}
\end{equation*}
$$

The wavefunctions ψ_{n} for the ground state of the quartic oscillator are shown in figure 1. Because of the symmetry of the wavefunctions, only the $x>0$ part of the functions is shown.

Neither the functions ψ_{n} nor the resulting wavefunction ψ are normalized. The first few overlap integrals $S_{0 n}=\left\langle\psi_{0} \mid \psi_{n}\right\rangle$ for the ground state equal $S_{00}=1.13, S_{01}=-0.046, S_{02}=0.0038$, $S_{03}=0.00031, S_{04}=0.00018, S_{05}=0.000092$. We see that the functions ψ_{n} are 'almost orthogonal' and the overlap integrals are, except for S_{01}, positive.

It is seen from figure 1 that the perturbation series for the renormalized wavefunction

$$
\begin{equation*}
\psi_{R}=\sum_{n=0}^{\infty}(1-\kappa)^{n} \psi_{n} \tag{42}
\end{equation*}
$$

has a very simple physical interpretation. The function ψ_{0} corresponds to the Hamiltonian H_{0}, where $H_{0}=p^{2}+x^{4} / 3$. The wavefunction ψ_{R} corresponding to the Hamiltonian $H_{R}=H_{0}+(1-\kappa) H_{1}$, where $H_{1}=x^{2}-x^{4} / 3$ has to decay less slowly than the function ψ_{0}. Therefore, the function ψ_{1} is first negative and then positive. Then, the function ψ_{2} corrects the behaviour of the function ψ_{0} in more detail. It is seen from figures $1(a)$ and (b) that the ground state function ψ_{2} has a minimum at the point where ψ_{1} changes its sign. Beginning from $n \geqslant 3$ (see figures $1(b)-(d)$), the functions ψ_{n} have very simple form. They are positive for all x, their maximum shifts with increasing n to larger values of x and the value of their maximum goes down. With increasing n, smaller corrections $(1-\kappa)^{n} \psi_{n}$ to ψ_{R} in the region more distant from the origin are obtained. Therefore, truncating the perturbation series (42) one can make the error caused by the truncation arbitrarily small.

From the form of the functions ψ_{n}, we can understand the signs of the Γ_{n} coefficients for the ground state of the quartic oscillator.

The function ψ_{0} shown in figure $1(a)$ is the ground state solution of the Schrödinger equation with the Hamiltonian H_{0}. The corresponding eigenvalue $\Gamma_{0}=0.73521$ [18] must lie above the minimum of the potential and, therefore, must be positive.

The first energy correction is given by the well known equation

$$
\begin{equation*}
\Gamma_{1}=\frac{W_{00}}{S_{00}} \tag{43}
\end{equation*}
$$

where $W_{0 n}=\left\langle\psi_{0}\right| H_{1}\left|\psi_{n}\right\rangle$. Taking into account that the potential H_{1} is positive for $x \in(0, \sqrt{3})$ and the function ψ_{0} decays rapidly for $x>\sqrt{3}$ we see that the coefficient Γ_{1} has to be positive in agreement with $\Gamma_{1}=0.27705$ [18].

Further coefficients Γ_{n} are given by the equation following from equation (28):

$$
\begin{equation*}
\Gamma_{n}=\frac{W_{0, n-1}-\sum_{i=1}^{n-1} \Gamma_{i} S_{0, n-i}}{S_{00}} \tag{44}
\end{equation*}
$$

For $n=2$, the function ψ_{1} is negative for small $x>0$ (see figure $1(b)$) so that $W_{01}=-0.025$ is also negative. Taking into account the values of W_{01}, S_{00}, S_{01} and Γ_{1} in equation (44) for $n=2$ we get the negative value of Γ_{2} in agreement with $\Gamma_{2}=-0.011178$ [18].

Because of the form of the wavefunctions ψ_{n} (see figure $1(b)-(d)$ and the discussion above) and the form of the potential H_{1} the matrix elements $W_{0, n-1}$ are positive for $n=3$ and negative for $n>3$. At the same time, the sum $\sum_{i=1}^{n-1} \Gamma_{i} S_{0, n-i}$ is positive for $n \geqslant 3$. Thus, the sign of the coefficient Γ_{3} depends on the absolute values of these terms. It is negative for the ground and first excited states of the quartic oscillator and the first excited state of the sextic, octic and decadic oscillators (see [18] and table 2). However, it is positive for the ground state of the sextic, octic and decadic oscillators (see table 1).

For $n \geqslant 4$, the term $W_{0, n-1}$ is negative. It is consequence of the fact that the functions ψ_{0} and $\psi_{n}, n \geqslant 2$ have positive values and the functions $\psi_{n}, n>2$ have maximum in the region where the perturbation potential H_{1} becomes negative (see above). Since both the terms $W_{0, n-1}$ and $-\sum_{i=1}^{n-1} \Gamma_{i} S_{0, n-i}$ are negative the coefficients Γ_{n} are for $n>4$ negative.

Figure 1. The perturbation wavefunctions ψ_{n} for the ground state of the quartic oscillator with the renormalized Hamiltonian $H_{R}=H_{0}+(1-\kappa) H_{1}$, where $H_{0}=p^{2}+x^{4} / 3$ and $H_{1}=x^{2}-x^{4} / 3$. Because of the symmetry of the functions ψ_{n}, only the $x>0$ part of the functions is shown. (a) $n=0,1$, (b) $n=2, \ldots, 5$, (c) $n=6, \ldots, 10,(d) n=21, \ldots, 25$.

Figure 1. (Continued)

The main arguments of this discussion also apply for the excited states and for the higherorder oscillators with $m=3,4,5$ where the perturbation potential $H_{1}=x^{2}-x^{2 m} / B_{m}$ and the wavefunctions ψ_{n} have analogous form.

4. Ordinary strong coupling case

4.1. Coefficients K_{n}

4.1.1. Ground and first excited states. The coefficients K_{n} can be computed by the method described in section 2 . They can also be computed from the Γ_{n} coefficients via the equations [32]

$$
\begin{equation*}
K_{0} B_{m}^{\frac{-1}{m+1}}=\Gamma_{0} \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{n} B_{m}^{\frac{2 n-1}{m+1}}=\Gamma_{n}-\sum_{i=0}^{n-1} K_{i} \frac{B_{m}^{\frac{2 i-1}{m+1}}}{(n-i)!} \frac{\Gamma\left(\frac{2 i-1}{m+1}+n-i\right)}{\Gamma\left(\frac{2 i-1}{m+1}\right)} \tag{46}
\end{equation*}
$$

following from the comparison of the series (4) and (12). We note that the coefficient K_{n} depends on the coefficients $\Gamma_{0}, \ldots, \Gamma_{n}$ and vice versa. With increasing n, the K_{n} coefficients go to zero more quickly than the Γ_{n} coefficients and cancellation of large terms in equation (46) requires very high computational accuracy. In our calculations, we used 250 decimal digits accuracy. The accuracy of the energy $E(\beta)$ given by equation (4) is similar to that achieved in $[33,34]$ by means of the numerical integration of the Bloch equation (about 70 digits for $\beta=1$).

Until now, only a small number of the K_{n} coefficients have been computed (see e.g. [12,21,30,32,35-38]). For this reason, we calculated the K_{n} coefficients for the ground and first excited states of the quartic, sextic, octic and decadic oscillators (see tables 7 and 8). We note that the absolute values of these coefficients go down with increasing n more rapidly than in case of the Γ_{n} coefficients (cf tables 7 and 8 with tables 1 and 2 and [18]). With increasing m and K, the coefficients K_{n} go down more quickly than for the ground state of the quartic oscillator ($m=2$ and $K=0$). It is seen that about 20 first terms of the series (4) are sufficient to achieve very high accuracy of the energy (4) for $\beta \geqslant 1$.

The large-order analysis of the ground state K_{n} coefficients (table 7) was performed in [24]. Here, also we perform a similar analysis for the first excited state (table 8). The corresponding values of the branch points $z_{0}, \beta_{\text {min }}$ and the constants c_{1}, \ldots, c_{4} in equation (21) are given in table 9. It is seen that the values of the coefficients c_{i} go down with increasing i so that our restriction to a few terms in the expansion (21) is justified. The coefficients c_{i} depend slightly on n_{0} so that their values are less reliable than the values of z_{K} and $\beta_{\min }$. Because of the prefactor $\beta^{1 /(m+1)}$ in equation (4) which goes to zero for $\beta \rightarrow 0$, the expansion $\sum_{n} K_{n} \beta^{-2 n /(m+1)}$ must diverge for $\beta \rightarrow 0$ when $E(0)=2 K+1$. It is seen from table 9 that $\beta_{\text {min }}$ goes down with increasing m in agreement with the behaviour of the prefactor $\beta^{1 /(m+1)}$ which goes to zero more slowly if m is increased.
4.1.2. Excited states of the quartic oscillator. In contrast to the Γ_{n} coefficients, dependence of the coefficients K_{n} on m and K is more complex. To clarify their K-dependence, we computed $100 K_{n}$ coefficients for higher excited states ($K=2, \ldots, 10$) of the quartic oscillator (see table 10). It is seen that the coefficients K_{n} for large K go down with increasing n more rapidly than the coefficients Γ_{n} shown in table 6.
Table 6. Selected values of the coefficients Γ_{n} for the excited states $(K=2, \ldots, 10)$ of the quartic oscillator.

Table 7. Selected values of the coefficients K_{n} for the ground state ($K=0$) of the quartic, sextic, octic and decadic oscillators ($m=2,3,4,5$).

n	$\begin{aligned} & m=2 \\ & K_{n} \end{aligned}$	$\begin{aligned} & m=3 \\ & K_{n} \end{aligned}$	$\begin{aligned} & m=4 \\ & K_{n} \end{aligned}$	$\begin{aligned} & m=5 \\ & K_{n} \end{aligned}$
0	1.0603620904	1.1448024537	1.2258201138	1.2988437006
1	0.3620226487	0.3079203037	0.2771189343	0.2566473843
2	$-0.3451026272 \mathrm{e}-1$	-0.1854166431e-1	$-0.1263228426 \mathrm{e}-1$	-0.966539 $3858 \mathrm{e}-2$
3	$0.5195302710 \mathrm{e}-2$	$0.1559742195 \mathrm{e}-2$	$0.7504415704 \mathrm{e}-3$	$0.4548848568 \mathrm{e}-3$
4	$-0.8308344463 \mathrm{e}-3$	-0.123901 $1743 \mathrm{e}-3$	-0.385 $9781595 \mathrm{e}-4$	-0.174023066 4e-4
5	$0.1291119077 \mathrm{e}-3$	$0.7971948825 \mathrm{e}-5$	$0.1270805942 \mathrm{e}-5$	$0.3206040931 \mathrm{e}-6$
6	-0.1848946344e-4	$-0.2676728489 \mathrm{e}-6$	$0.2476288899 \mathrm{e}-7$	$0.2075773961 \mathrm{e}-7$
7	$0.2263664760 \mathrm{e}-5$	-0.2512175149e-7	$-0.8246486303 \mathrm{e}-8$	$-0.2629182176 \mathrm{e}-8$
8	$-0.1887720148 \mathrm{e}-6$	$0.6322514340 \mathrm{e}-8$	$0.7529426350 \mathrm{e}-9$	$0.1486934211 \mathrm{e}-9$
9	$-0.6523871072 \mathrm{e}-8$	-0.762588422 7e-9	$-0.3812762727 \mathrm{e}-10$	$-0.3242587715 \mathrm{e}-11$
10	$0.7775509229 \mathrm{e}-8$	$0.5897329727 \mathrm{e}-10$	$0.4403710838 \mathrm{e}-14$	-0.280 $1398143 \mathrm{e}-12$
20	$-0.7280303380 \mathrm{e}-15$	$0.1019170099 \mathrm{e}-19$	$-0.4795196447 \mathrm{e}-22$	-0.838 $1787951 \mathrm{e}-24$
40	$0.7539834269 \mathrm{e}-29$	-0.459 $4454261 \mathrm{e}-39$	$0.1082376477 \mathrm{e}-43$	$0.5349293367 \mathrm{e}-47$
60	-0.1196524848e-42	$-0.8860450273 \mathrm{e}-57$	$0.3670320228 \mathrm{e}-65$	-0.4495293327e-70
80	$0.2203712224 \mathrm{e}-56$	$-0.4765810021 \mathrm{e}-75$	$-0.1120614650 \mathrm{e}-85$	$0.2921886792 \mathrm{e}-93$
100	-0.428794 $3761 \mathrm{e}-70$	-0.174 562 $4729 \mathrm{e}-93$	$0.1301178039 \mathrm{e}-106$	$0.1893973467 \mathrm{e}-116$

Table 8. Selected values of the coefficients K_{n} for the first excited state ($K=1$) of the quartic, sextic, octic and decadic oscillators ($m=2,3,4,5$).

n	$\begin{aligned} & m=2 \\ & K_{n} \end{aligned}$	$\begin{aligned} & m=3 \\ & K_{n} \end{aligned}$	$\begin{aligned} & m=4 \\ & K_{n} \end{aligned}$	$\begin{aligned} & m=5 \\ & K_{n} \end{aligned}$
0	3.7996730298	4.3385987115	4.7558744139	5.0978765292
1	0.9016058958	0.7182201323	0.6272998768	0.5718257657
2	-0.5748308973e-1	-0.243 $9568231 \mathrm{e}-1$	-0.147491062 4e-1	-0.1054117731e-1
3	$0.5492746102 \mathrm{e}-2$	$0.9994795256 \mathrm{e}-3$	$0.3553379614 \mathrm{e}-3$	$0.1762897307 \mathrm{e}-3$
4	-0.513 $8969770 \mathrm{e}-3$	-0.262 $8559641 \mathrm{e}-4$	-0.215636 $1602 \mathrm{e}-5$	$0.4529723965 \mathrm{e}-6$
8	$0.3979701588 \mathrm{e}-4$	$-0.5224694020 \mathrm{e}-6$	-0.3194016861e-6	-0.138 $6451693 \mathrm{e}-6$
6	$-0.1646638974 \mathrm{e}-5$	$0.1106728351 \mathrm{e}-6$	$0.1507363751 \mathrm{e}-7$	$0.3027267367 \mathrm{e}-8$
7	-0.179706613 5e-6	$-0.5941434194 \mathrm{e}-8$	$-0.2281506859 \mathrm{e}-10$	$0.8019214286 \mathrm{e}-10$
8	$0.5599643861 \mathrm{e}-7$	$-0.4410057347 \mathrm{e}-13$	-0.292862 $6959 \mathrm{e}-10$	$-0.6147661426 \mathrm{e}-11$
9	$-0.8175744334 \mathrm{e}-8$	$0.2553936812 \mathrm{e}-10$	$0.1302473173 \mathrm{e}-11$	$0.6546707701 \mathrm{e}-13$
10	$0.7336219766 \mathrm{e}-9$	$-0.2002881199 \mathrm{e}-11$	$0.9892931730 \mathrm{e}-14$	$0.7096585943 \mathrm{e}-14$
20	$0.7151330925 \mathrm{e}-18$	$0.8033232037 \mathrm{e}-23$	-0.101536175 8e-25	$0.1765976904 \mathrm{e}-28$
40	$-0.4842654530 \mathrm{e}-34$	$0.3669148844 \mathrm{e}-45$	$0.5723841233 \mathrm{e}-51$	-0.8366185030e-55
60	$-0.2740888287 \mathrm{e}-50$	$0.1996793448 \mathrm{e}-67$	-0.506457559 7e-76	-0.192095 $9777 \mathrm{e}-82$
80	$-0.4800060566 \mathrm{e}-67$	$0.3475757362 \mathrm{e}-90$	$0.5370539191 \mathrm{e}-101$	$0.1016736486 \mathrm{e}-108$
100	$0.4123502513 \mathrm{e}-83$	-0.200 $9987458 \mathrm{e}-111$	-0.628371240 1e-126	$0.4363739422 \mathrm{e}-136$

We investigated also the large-order behaviour of the K_{n} coefficients. Our numerical calculations (see tables 7 and 10) show that the large-order coefficients K_{n} for $K=0$ and $K=2$ obey with a high accuracy the relation

$$
\begin{equation*}
K_{n}^{K=0}=-K_{n}^{K=2} \tag{47}
\end{equation*}
$$

We verified that, in agreement with [23], the values of the branch points z_{K} and $\beta_{\min }$ are the same for $K=0$ and $K=2$. At the same time, the coefficients $c_{i}^{K=2}$ in equation (21) for $K=2$ obey the equation

$$
\begin{equation*}
c_{i}^{K=2}=-c_{i}^{K=0} \quad i=1, \ldots, 4 . \tag{48}
\end{equation*}
$$

Table 9. The square-root branch point $z_{1}, \beta_{\text {min }}$ and the coefficients c_{1}, \ldots, c_{4} in the large-order formula (21) describing the large-order behaviour of the coefficients K_{n} for the first excited state ($K=1$) of the quartic, sextic, octic and decadic oscillators $(m=2,3,4,5)$. The values of the coefficients c_{i} were calculated by the method described in [24] for $n=n_{0}$.

m	n_{0}	z_{1}	$\beta_{\min }$	c_{1}	c_{2}	c_{3}	c_{4}
2	106	$-4.9872837+4.0231543 \mathrm{i}$	0.061651769	-0.79690	$0.144 \mathrm{e}-1$	$0.1 \mathrm{e}-3$	$0.5 \mathrm{e}-6$
3	85	$-7.0291039+10.0212583 \mathrm{i}$	0.0066740561	-0.507007	$0.7 \mathrm{e}-3$	$-0.1 \mathrm{e}-5$	$-0.2 \mathrm{e}-8$
4	88	$-7.86381032+15.4613231 \mathrm{i}$	0.00079797016	-0.386025	$0.882 \mathrm{e}-4$	$0.1 \mathrm{e}-7$	$0.2 \mathrm{e}-9$
5	85	$-8.25547446+20.0562683 \mathrm{i}$	0.000098014351	-0.352687	$0.592 \mathrm{e}-4$	$0.5 \mathrm{e}-8$	$0.6 \mathrm{e}-10$

For $K>3$, the large-order behaviour of the K_{n} coefficients can be described by equations (18) or (21) only approximately. To suppress the contribution of the other branch points [23] it would be necessary to consider n much larger than 100 or to generalize equation (21) to a larger number of the branch points.

4.2. Wavefunctions ψ_{n}

The wavefunctions ψ_{n} for the ground state of the quartic oscillator corresponding to $H_{0}=$ $p^{2}+x^{4}, H_{1}=x^{2}$ and $\lambda=\beta^{-2 /(m+1)}$ are shown in figure 2.

First we note that, in contrast to the functions ψ_{n} in the renormalized case (figure 1), the functions ψ_{n} in figure 2 change their sign. It is seen that maxima or minima of these functions shift with increasing n to larger values of x, however, this shift is less significant than in the renormalized case. Finally, we see that the norm of the functions ψ_{n} in figure 2 goes to zero with increasing n more rapidly than for the functions in figure 1 .

Thus, the resulting situation is more complex than in the renormalized case. Terms in the equation for the K_{n} coefficients analogous to equation (44) have different signs and their cancellation can be expected. As a result, different signs of the K_{n} coefficients and rapidly decreasing absolute values of the coefficients with increasing n are obtained (see tables 7 and 8).

5. Conclusions

In this paper, we performed detailed numerical analysis of the convergent strong coupling expansions (4) and (12) of the energies $E(\beta)$ and $E_{R}(\kappa)$ for the anharmonic oscillators. Except for the expansion coefficients Γ_{n} and K_{n}, we also discussed the corresponding perturbation wavefunctions.

The ground and first excited states of the quartic, sextic, octic and decadic oscillators were investigated. The higher excited states of the quartic oscillator were also discussed.

For these cases, the expansion coefficients Γ_{n} and K_{n}, the large-order formulae for the coefficients, the radii of convergence of the perturbation series, the perturbation wavefunctions and the summation rules were investigated.

The properties of the renormalized strong coupling expansion (12) can be summarized as follows:

- This expansion converges for all $\kappa \in(0,2)$; it means that it converges for all $\beta \in(0, \infty)$ corresponding to $\kappa \in(0,1)$ and for the double-well potentials $V(x)=\kappa x^{2 m} / B_{m}-(\kappa-$ 1) x^{2} in the renormalized Hamiltonian H_{R} corresponding to $\kappa \in(1,2)$.
- The large-order formula (14) is analytic. It is at least qualitatively applicable from n of the order of ten.
Table 10. Selected values of the coefficients K_{n} for the excited states $(K=2, \ldots, 10)$ of the quartic oscillator.

$\begin{aligned} & K=2 \\ & K_{n} \end{aligned}$	$\begin{aligned} & K=3 \\ & K_{n} \end{aligned}$	$\begin{aligned} & K=4 \\ & K_{n} \end{aligned}$	$\begin{aligned} & K=5 \\ & K_{n} \end{aligned}$	$\begin{aligned} & K=6 \\ & K_{n} \end{aligned}$	$\begin{aligned} & K=7 \\ & K_{n} \end{aligned}$	$\begin{aligned} & K=8 \\ & K_{n} \end{aligned}$	$\begin{aligned} & K=9 \\ & K_{n} \end{aligned}$	$\begin{aligned} & K=10 \\ & K_{n} \end{aligned}$
07.4557	11.644	16.261	21.238	26.528	32.098	37.923	43.981	50.256
11.2447	1.5579	1.8416	2.1050	2.3528	2.5883	2.8134	3.0299	3.2390
$2-0.46601 \mathrm{e}-1$	-0.471 07e-1	-0.469 15e-1	$-0.46846 \mathrm{e}-1$	-0.46804e-1	-0.467 78e-1	-0.46761e-1	$-0.46749 \mathrm{e}-1$	$-0.46740 \mathrm{e}-1$
$30.95884 \mathrm{e}-3$	$0.11844 \mathrm{e}-2$	$0.97879 \mathrm{e}-3$	$0.86045 \mathrm{e}-3$	$0.77056 \mathrm{e}-3$	$0.70090 \mathrm{e}-3$	$0.64503 \mathrm{e}-3$	$0.59908 \mathrm{e}-3$	$0.56050 \mathrm{e}-3$
$4 \quad 0.36254 \mathrm{e}-3$	$0.86833 \mathrm{e}-4$	$0.69948 \mathrm{e}-4$	$0.50933 \mathrm{e}-4$	$0.40107 \mathrm{e}-4$	$0.32776 \mathrm{e}-4$	$0.27539 \mathrm{e}-4$	$0.23624 \mathrm{e}-4$	$0.20598 \mathrm{e}-4$
5-0.965 06e-4	-0.15005e-4	-0.12360e-4	-0.769 80e-5	-0.54490e-5	-0.404 99e-5	$-0.31320 \mathrm{e}-5$	-0.249 56e-5	-0.20359e-5
6 0.16438e-4	$0.41812 \mathrm{e}-6$	0.116274-5	$0.55726 \mathrm{e}-6$	$0.35971 \mathrm{e}-6$	$0.24232 \mathrm{e}-6$	$0.17234 \mathrm{e}-6$	$0.12745 \mathrm{e}-6$	$0.97241 \mathrm{e}-7$
$7-0.21252 \mathrm{e}-5$	$0.22826 \mathrm{e}-6$	-0.105 18e-6	-0.262 03e-7	-0.17225e-7	-0.10364e-7	$-0.67904 \mathrm{e}-8$	$-0.46603 \mathrm{e}-8$	-0.332 51e-8
$80.17345 \mathrm{e}-6$	$-0.57270 \mathrm{e}-7$	$0.13979 \mathrm{e}-7$	0.523 99e-9	$0.84641 \mathrm{e}-9$	$0.41250 \mathrm{e}-9$	$0.25040 \mathrm{e}-9$	$0.15851 \mathrm{e}-9$	$0.10545 \mathrm{e}-9$
9 0.90404e-8	$0.81318 \mathrm{e}-8$	$-0.24089 \mathrm{e}-8$	$0.87625 \mathrm{e}-10$	$-0.81040 \mathrm{e}-10$	-0.27201e-10	-0.15673e-10	-0.902 12e-11	-0.55631e-11
$10-0.81762 \mathrm{e}-8$	-0.711 51e-9	0.38694e-9	$-0.25982 \mathrm{e}-10$	0.11549e-10	$0.25818 \mathrm{e}-11$	$0.14951 \mathrm{e}-11$	$0.78092 \mathrm{e}-12$	$0.44896 \mathrm{e}-12$
$20 \quad 0.72835 \mathrm{e}-15$	$-0.73677 \mathrm{e}-18$	$-0.32785 \mathrm{e}-18$	$0.21941 \mathrm{e}-19$	$-0.76520 \mathrm{e}-21$	-0.28450e-21	$0.12912 \mathrm{e}-21$	$-0.18915 \mathrm{e}-22$	$0.35060 \mathrm{e}-23$
40-0.75398e-29	$0.48429 \mathrm{e}-34$	$-0.51071 \mathrm{e}-36$	-0.261 32e-38	0.24448e-40	$0.54355 \mathrm{e}-43$	-0.43227e-43	$-0.60225 \mathrm{e}-45$	$0.30831 \mathrm{e}-46$
60 0.11965e-42	$0.27408 \mathrm{e}-50$	$0.28342 \mathrm{e}-53$	$0.46511 \mathrm{e}-57$	$-0.92443 \mathrm{e}-60$	$0.20104 \mathrm{e}-62$	$0.22176 \mathrm{e}-64$	$-0.51129 \mathrm{e}-68$	$0.29968 \mathrm{e}-68$
80-0.22037e-56	$0.48000 \mathrm{e}-67$	$0.36758 \mathrm{e}-70$	$-0.83046 \mathrm{e}-76$	0.38759e-79	$0.13157 \mathrm{e}-82$	$-0.125580 \mathrm{e}-85$	$0.343529 \mathrm{e}-88$	$0.173835 \mathrm{e}-91$
$100 \quad 0.42879 \mathrm{e}-70$	$-0.41235 \mathrm{e}-83$	0.19645e-87	$0.11175 \mathrm{e}-94$	-0.999 57e-99	$0.64531 \mathrm{e}-103$	$0.77276 \mathrm{e}-107$	$0.82719 \mathrm{e}-110$	$-0.90045 \mathrm{e}-113$

Figure 2. The perturbation wavefunctions ψ_{n} multiplied by $(-1)^{n}$ for the ground state of the quartic oscillator with the ordinary Hamiltonian $H=\beta^{1 / 3}\left[H_{0}+\beta^{-2 / 3} H_{1}\right]$, where $H_{0}=p^{2}+x^{4}$ and $H_{1}=x^{2}$. Because of the symmetry of the functions ψ_{n}, only the $x>0$ part of the functions is shown. (a) $n=0,1$, (b) $n=2, \ldots, 4$, (c) $n=5, \ldots, 7,(d) n=21, \ldots, 23$. In case (d), the functions are multiplied by 10^{10}.

Figure 2. (Continued)

- Truncation of the series (12) yields the upper bounds to the exact value of the energy $E_{R}(\kappa)$.
- The sum of the truncated series plus the remainder of the series in which equation (14) is used gives the lower bounds to the energy $E_{R}(\kappa)$.
- The perturbation wavefunctions ψ_{n} have a simple form which clarifies the sign pattern of the Γ_{n} coefficients. Truncating the perturbation series (42) one can make the error caused by the truncation arbitrarily small.
- The transformation (6) and the large-order formula (14) depend on the constant B_{m}. The value (7) of this constant which was optimized for the ground state leads to slower convergence of the series (12) for higher excited states. For these states, another value of the constant B_{m} can be taken to improve the convergence of the series (12).

In comparison with the renormalized strong coupling expansion (12), the ordinary strong coupling expansion (4) has the following properties:

- The expansion converges for all $\beta \in\left(\beta_{\text {min }}, \infty\right)$ corresponding to $z \in\left(0,\left|z_{K}\right|\right)$ in equation (19). This series converges also for $z \in\left(-\left|z_{K}\right|, 0\right)$ corresponding to the doublewell potential $V(x)=x^{2 m}-|z| x^{2}$. The value of $\beta_{\text {min }}$ decreases with increasing m and K.
- The large-order formula (21) depends on the branch point z_{K} and coefficients c_{i} which are not known analytically.
- The application of this formula to higher excited states is possible for very large n only; for smaller n, the extension of equation (21) to larger number of the branch points is necessary.
- Truncation of the series (4) does not give the upper or lower bounds to the energy $E(\beta)$.
- The perturbation wavefunctions have a more complex form than in the renormalized case and have a less straightforward interpretation.
- With increasing n, the perturbation coefficients K_{n} go to zero more rapidly than the coefficients Γ_{n}. However, it does not necessarily mean more rapid convergence of the series (4) with respect to the series (12) since it also depends on the values of the expansion variables $\beta^{-2 /(m+1)}$ and $1-\kappa$.

Our results show that the renormalized strong coupling expansion (12) is the most advantageous perturbative approach to the anharmonic oscillators. At the same time, it represents a non-trivial example of the perturbation theory which converges for all values of the coupling constant $\beta>0$ and has some other useful properties. Since the anharmonic oscillators are important model systems not only in quantum mechanics and quantum field theory but also in many applications (see e.g. [39-42]), we believe that our results contribute to a deeper understanding of the large-order perturbation theories in general.

Acknowledgments

This work was supported in part by the NSERC and CFCSU of Canada and the GA CR (grant No 202/97/1016) and the GA UK (grant No 155/96) of Czech Republic.

References

[1] Bender C M and Wu T T 1969 Phys. Rev. 1841231
[2] Simon B 1970 Ann. Phys., NY 5876
[3] Simon B 1972 Cargese Lectures in Physics 1970 vol 5, ed D Bessis (New York: Gordon and Breach) p 383
[4] Bender C M and Wu T T 1971 Phys. Rev. Lett. 27461
[5] Bender C M and Wu T T 1973 Phys. Rev. D 71620
[6] Löwdin P O and Öhrn Y (ed) 1981 Proc. Sanibel Workshop on Perturbation Theory at Large Order (Sanibel, Florida)
(Simon B and Bender C M 1982 Int. J. Quantum Chem. 21 1)
[7] Le Guillou J C and Zinn-Justin J (ed) 1990 Large-Order Behaviour of Perturbation Theory (Amsterdam: NorthHolland)
[8] Banks T I and Bender C M 1972 J. Math. Phys. 131320
[9] Čížek J and Vrscay E R 1986 Int. J. Quantum Chem. 2065 (Quantum Chem. Symp.)
[10] Vinette F and Čížek J 1991 J. Math. Phys. 323392
[11] Weniger E J, Čížek J and Vinette F 1993 J. Math. Phys. 34571
[12] Weniger E J 1996 Ann. Phys., NY 246133
[13] Guida R, Konishi K and Suzuki H 1996 Ann. Phys., NY 249109
[14] Guida R, Konishi K and Suzuki H 1995 Ann. Phys., NY 241152
[15] Seznec R and Zinn-Justin J 1979 J. Math. Phys. 201398
[16] Kleinert H and Janke W 1995 Phys. Rev. Lett. 205101
[17] Bender C M, Mandula J E and McCoy B M 1970 Phys. Rev. Lett. 24681
[18] Skála L, Čížek J, Kapsa V and Weniger E J 1997 Phys. Rev. A 564471
[19] Skála L, Čížek J, Weniger E J and Zamastil J 1999 Phys. Rev. A 59102
[20] Zamastil J, Čížek J and Skála L 1999 Ann. Phys., NY to be published
[21] Ushveridze A G 1989 Bulg. J. Phys. 16137 (in Russian)
[22] Loeffel J J and Martin A 1972 Cargese Lectures in Physics 1970 vol 5, ed D Bessis (New York: Gordon and Breach) p 415
[23] Shanley P E 1986 Phys. Lett. 117161
[24] Skála L, Čížek J and Zamastil J 1999 J. Phys. A: Math. Gen. 32 L123
[25] Skála L and Čížek J 1996 J. Phys. A: Math. Gen. 29 L129
[26] Skála L and Čížek J 1996 J. Phys. A: Math. Gen. 296467
[27] Znojil M 1996 J. Phys. A: Math. Gen. 295253
[28] Guardiola R and Ros J 1996 J. Phys. A: Math. Gen. 296461
[29] Au C K, Chow C K and Chu C S 1997 J. Phys. A: Math. Gen. 304133
[30] Fernández F M and Guardiola R 1997 J. Phys. A: Math. Gen. 307187
[31] Hatsuda T, Kunihiro T and Tanaka T 1997 Phys. Rev. Lett. 783229
[32] Weniger E J 1996 Phys. Rev. Lett. 772859
[33] Meissner H and Steinborn E O 1997 Int. J. Quant. Chem. 61777
[34] Meissner H and Steinborn E O 1997 Phys. Rev. A 561189
[35] Turbiner A V and Ushveridze A G 1988 J. Math. Phys. 292053
[36] Guardiola R, Solís M A and Ros J 1992 Nuovo Cimento B 107713
[37] Fernández F M and Guardiola R 1993 J. Phys. A: Math. Gen. 267169
[38] Janke W and Kleinert H 1995 Phys. Rev. Lett. 752787
[39] Čížek J, Špirko V and Bludsky O 1993 J. Chem. Phys. 997331
[40] Špirko V and Čížek J 1995 J. Chem. Phys. 1028906
[41] Špirko V, Čížek J and Skála L 1995 J. Chem. Phys. 1028916
[42] Čížek J and Špirko V 1997 J. Chem. Phys. 10610248

